5 research outputs found

    A method to measure the quenching factor for recoil energy of oxygen in bismuth germanium oxide scintillators

    Full text link
    Bismuth germanium oxide (Bi4Ge3O12\rm Bi_{4} Ge_{3} O_{12}, BGO) scintillation crystals are widely used as detectors in the fields of particle physics and astrophysics due to their high density, and thus higher efficiency for gamma-ray detection. Owing to their good chemical stability, they can be used in any environment. For rare-event searches, such as dark matter and coherent elastic neutrino-nucleus scattering, BGO crystals are essential to comprehend the response of nuclear recoil. In this study, we have analyzed the events of neutron elastic scattering with oxygen in BGO crystals. Then, we have measured the quenching factor for oxygen recoil energy in the BGO crystal as a function of recoil energy by using a monoenergetic neutron source.Comment: 14 pages, 11 figures, 1 tabl

    Hibikino-Musashi@Home 2023 Team Description Paper

    Full text link
    This paper describes an overview of the techniques of Hibikino-Musashi@Home, which intends to participate in the domestic standard platform league. The team has developed a dataset generator for the training of a robot vision system and an open-source development environment running on a human support robot simulator. The robot system comprises self-developed libraries including those for motion synthesis and open-source software works on the robot operating system. The team aims to realize a home service robot that assists humans in a home, and continuously attend the competition to evaluate the developed system. The brain-inspired artificial intelligence system is also proposed for service robots which are expected to work in a real home environment

    Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande

    No full text
    International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M⊙_{\odot} star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance
    corecore