254 research outputs found

    Unified description of floppy and rigid rotating Wigner molecules formed in quantum dots

    Full text link
    Restoration of broken circular symmetry is used to explore the characteristics of the ground states and the excitation spectra of rotating Wigner molecules (RWM's) formed in two-dimensional parabolic N-electron quantum dots. In high magnetic fields, the RWM's are floppy rotors with the energies of the magic angular momentum (L) states obeying aL + b/L^{1/2}. Under such fields the ground-state energies (referenced to the kinetic energy in the lowest Landau level) approach the electrostatic energy of N point charges in the classical equilibrium molecular configuration. At zero field and strong interelectron repulsion, the RWM's behave like quasiclassical rigid rotors whose energies vary as L^2. The particular L-dependence in high B is inherent and natural to a floppy rotating WM, and it can be used as a crucial diagnostic tool for resolving the recently posed question whether the composite-fermion or the RWM picture is appropriate for QD's.Comment: 5 pages. Revtex4 with 3 EPS figures and 2 tables . For related papers, see http://www.prism.gatech.edu/~ph274c

    Microscopic description of the surface dipole plasmon in large Na_N clusters (950 < N < 12050)

    Full text link
    Fully microscopic RPA/LDA calculations of the dipole plasmon for very large neutral and charged sodium clusters, Na_N^Z+, in the size range 950 < N < 12050 are presented for the first time. 60 different sizes are considered altogether, which allows for an in-depth investigation of the asymptotic behavior of both the width and the position of the plasmon.Comment: Latex/Revtex, 4 pages with 4 Postscript figures, accepted for publication in Physical Review

    Group theoretical analysis of symmetry breaking in two-dimensional quantum dots

    Full text link
    We present a group theoretical study of the symmetry-broken unrestricted Hartree-Fock orbitals and electron densities in the case of a two-dimensional N-electron single quantum dot (with and without an external magnetic field). The breaking of rotational symmetry results in canonical orbitals that (1) are associated with the eigenvectors of a Hueckel hamiltonian having sites at the positions determined by the equilibrium molecular configuration of the classical N-electron problem, and (2) transform according to the irreducible representations of the point group specified by the discrete symmetries of this classical molecular configuration. Through restoration of the total-spin and rotational symmetries via projection techniques, we show that the point-group discrete symmetry of the unrestricted Hartree-Fock wave function underlies the appearance of magic angular momenta (familiar from exact-diagonalization studies) in the excitation spectra of the quantum dot. Furthermore, this two-step symmetry-breaking/symmetry-restoration method accurately describes the energy spectra associated with the magic angular momenta.Comment: A section VI.B entitled "Quantitative description of the lowest rotational band" has been added. 16 pages. Revtex with 10 EPS figures. A version of the manuscript with high quality figures is available at http://calcite.physics.gatech.edu/~costas/uhf_group.html For related papers, see http://www.prism.gatech.edu/~ph274c

    Energetics, forces, and quantized conductance in jellium modeled metallic nanowires

    Full text link
    Energetics and quantized conductance in jellium modeled nanowires are investigated using the local density functional based shell correction method, extending our previous study of uniform in shape wires [C. Yannouleas and U. Landman, J. Phys. Chem. B 101, 5780 (1997)] to wires containing a variable shaped constricted region. The energetics of the wire (sodium) as a function of the length of the volume conserving, adiabatically shaped constriction leads to formation of self selecting magic wire configurations. The variations in the energy result in oscillations in the force required to elongate the wire and are directly correlated with the stepwise variations of the conductance of the nanowire in units of 2e^2/h. The oscillatory patterns in the energetics and forces, and the correlated stepwise variation in the conductance are shown, numerically and through a semiclassical analysis, to be dominated by the quantized spectrum of the transverse states at the narrowmost part of the constriction in the wire.Comment: Latex/Revtex, 11 pages with 5 Postscript figure

    Molecular dynamics in shape space and femtosecond vibrational spectroscopy of metal clusters

    Full text link
    We introduce a method of molecular dynamics in shape space aimed at metal clusters. The ionic degrees of freedom are described via a dynamically deformable jellium with inertia parameters derived from an incompressible, irrotational flow. The shell correction method is used to calculate the electronic potential energy surface underlying the dynamics. Our finite temperature simulations of Ag_14 and its ions, following the negative to neutral to positive scheme, demonstrate the potential of pump and probe ultrashort laser pulses as a spectroscopy of cluster shape vibrations.Comment: Latex/Revtex, 4 pages with 3 Postscript figure

    Electron and boson clusters in confined geometries: symmetry breaking in quantum dots and harmonic traps

    Full text link
    We discuss the formation of crystalline electron clusters in semiconductor quantum dots and of crystalline patterns of neutral bosons in harmonic traps. In a first example, we use calculations for two electrons in an elliptic quantum dot to show that the electrons can localize and form a molecular dimer. The calculated singlet-triplet splitting (J) as a function of the magnetic field (B) agrees with cotunneling measurements, with its behavior reflecting the effective dissociation of the dimer for large B. Knowledge of the dot shape and of J(B) allows determination of the degree of entanglement. In a second example, we study strongly repelling neutral bosons in two-dimensional harmonic traps. Going beyond the Gross-Pitaevskii (GP) mean-field approximation, we show that bosons can localize and form polygonal-ring-like crystalline patterns. The total energy of the crystalline phase saturates in contrast to the GP solution, and its spatial extent becomes smaller than that of the GP condensate.Comment: LATEX, 9 pages with 6 figures. To appear in Proc. Natl. Acad. Sci. (USA). For related papers, see http://www.prism.gatech.edu/~ph274cy

    Electronic entropy, shell structure, and size-evolutionary patterns of metal clusters

    Full text link
    We show that electronic-entropy effects in the size-evolutionary patterns of relatively small (as small as 20 atoms), simple-metal clusters become prominent already at moderate temperatures. Detailed agreement between our finite-temperature-shell-correction-method calculations and experimental results is obtained for certain temperatures. This agreement includes a size-dependent smearing out of fine-structure features, accompanied by a measurable reduction of the heights of the steps marking major-shell and subshell closings, thus allowing for a quantitative analysis of cluster temperatures.Comment: Latex/Revtex, 4 pages with 3 Postscript figure

    Quantum dots in high magnetic fields: Rotating-Wigner-molecule versus composite-fermion approach

    Full text link
    Exact diagonalization results are reported for the lowest rotational band of N=6 electrons in strong magnetic fields in the range of high angular momenta 70 <= L <= 140 (covering the corresponding range of fractional filling factors 1/5 >= nu >= 1/9). A detailed comparison of energetic, spectral, and transport properties (specifically, magic angular momenta, radial electron densities, occupation number distributions, overlaps and total energies, and exponents of current-voltage power law) shows that the recently discovered rotating-electron-molecule wave functions [Phys. Rev. B 66, 115315 (2002)] provide a superior description compared to the composite-fermion/Jastrow-Laughlin ones.Comment: Extensive clarifications were added (see new footnotes) regarding the difference between the rotating Wigner molecule and the bulk Wigner crystal; also regarding the influence of an external confining potential. 12 pages. Revtex4 with 6 EPS figures and 5 tables . For related papers, see http://www.prism.gatech.edu/~ph274c
    • …
    corecore