46 research outputs found

    Stabilization of Brain Mast Cells Alleviates LPS-Induced Neuroinflammation by Inhibiting Microglia Activation

    Get PDF
    BackgroundThe functional aspects of mast cell-microglia interactions are important in neuroinflammation. Our previous studies have demonstrated that mast cell degranulation can directly induce microglia activation. However, the role of mast cells in Lipopolysaccharide (LPS)-induced microglia activation, neuroinflammation and cognitive impairment has not been clarified.MethodsThis study investigated the interaction between brain microglia and mast cells in vivo through site-directed injection of cromolyn into rat right hypothalamus using stereotaxic techniques. Cognitive function was subsequently assessed using trace fear conditioning and Y maze tests. Mast cells in rat brain were stained with toluidine blue and counted using Cell D software. Microglia activation was assessed by Iba1 immunohistochemistry both in rat brain and in mast cell-deficient KitW-sh/W-sh mice. Receptor expression in rat microglia was determined using flow cytometry analysis. Cytokine levels in rat brain tissue and cell supernatant were measured using high-throughput ELISA. Western blotting was used to analyze Cell signaling proteins.ResultsIn this study, intraperitoneal injection of 1 mg/kg LPS induced mast cell activation in hypothalamus and cognitive dysfunction in rats, and that this process can be repressed by the mast cell stabilizer cromolyn (200 μg). Meanwhile, in mice, LPS IP injection induced significant microglia activation 24 h later in the hypothalamus of wild-type (WT) mice, but had little effect in KitW-sh/W-sh mice. The stabilization of mast cells in rats inhibited LPS-induced microglia activation, inflammatory factors release, and the activation of MAPK, AKT, and NF-κB signaling pathways. We also found that LPS selectively provokes upregulation of H1R, H4R, PAR2, and TLR4, but downregulation of H2R and H3R, in ipsilateral hypothalamus microglia; these effects were partially inhibited by cromolyn. In addition, LPS was also found to induce activation of P815 cells in vitro, consistent with findings from in vivo experiments. These activated P815 cells also induced cytokine release from microglia, which was mediated by the MAPK signaling pathway.ConclusionTaken together, our results demonstrate that stabilization of mast cells can inhibit LPS-induced neuroinflammation and memory impairment, suggesting a novel treatment strategy for neuroinflammation-related diseases

    Evaluation of a computer-aided diagnostic model for corneal diseases by analyzing in vivo confocal microscopy images

    Get PDF
    ObjectiveIn order to automatically and rapidly recognize the layers of corneal images using in vivo confocal microscopy (IVCM) and classify them into normal and abnormal images, a computer-aided diagnostic model was developed and tested based on deep learning to reduce physicians’ workload.MethodsA total of 19,612 corneal images were retrospectively collected from 423 patients who underwent IVCM between January 2021 and August 2022 from Renmin Hospital of Wuhan University (Wuhan, China) and Zhongnan Hospital of Wuhan University (Wuhan, China). Images were then reviewed and categorized by three corneal specialists before training and testing the models, including the layer recognition model (epithelium, bowman’s membrane, stroma, and endothelium) and diagnostic model, to identify the layers of corneal images and distinguish normal images from abnormal images. Totally, 580 database-independent IVCM images were used in a human-machine competition to assess the speed and accuracy of image recognition by 4 ophthalmologists and artificial intelligence (AI). To evaluate the efficacy of the model, 8 trainees were employed to recognize these 580 images both with and without model assistance, and the results of the two evaluations were analyzed to explore the effects of model assistance.ResultsThe accuracy of the model reached 0.914, 0.957, 0.967, and 0.950 for the recognition of 4 layers of epithelium, bowman’s membrane, stroma, and endothelium in the internal test dataset, respectively, and it was 0.961, 0.932, 0.945, and 0.959 for the recognition of normal/abnormal images at each layer, respectively. In the external test dataset, the accuracy of the recognition of corneal layers was 0.960, 0.965, 0.966, and 0.964, respectively, and the accuracy of normal/abnormal image recognition was 0.983, 0.972, 0.940, and 0.982, respectively. In the human-machine competition, the model achieved an accuracy of 0.929, which was similar to that of specialists and higher than that of senior physicians, and the recognition speed was 237 times faster than that of specialists. With model assistance, the accuracy of trainees increased from 0.712 to 0.886.ConclusionA computer-aided diagnostic model was developed for IVCM images based on deep learning, which rapidly recognized the layers of corneal images and classified them as normal and abnormal. This model can increase the efficacy of clinical diagnosis and assist physicians in training and learning for clinical purposes

    Metabonomics research accelerates discovery of medical biomarkers

    No full text
    Biomarker refers to a characteristic that can be objectively detected and evaluated, and can be used as an indicator of normal biological process, pathological process or therapeutic intervention pharmacological response. As one of the key words of individualized medicine, the search and discovery of valuable biomarkers has become a research hotspot in the current medical field

    Protective role of dexmedetomidine in unmethylated CpG-induced inflammation responses in BV2 microglia cells

    No full text
    Unmethylated CpG DNA, as a stimulatory molecule, has potent pro-inflammatory effects in the central nervous system (CNS). Dexmedetomidine (DEX) has been confirmed to exert anti-inflammatory effects in CNS. Our study was aimed to explore the effects of DEX on tumor necrosis factor-α (TNF-α) expression in unmethylated CpG DNA-challenged microglia. In vivo, after 3 d intracisternal injection of ODN1668, we evaluated the severity of meningitis with or without DEX via pathobiology method and detected the expression of TNF-α from molecular and protein levels. In vitro, we explored whether the ODN1668 could activate microglia to express TNF-α and the inhibition mechanism of DEX. Our results demonstrated that DEX could alleviate the severity of ODN1668-induced meningitis. And while BV2 microglia was stimulated by ODN1668 for different time, TNF-α was increased in mRNA and protein levels but the effect was attenuated by DEX via decreasing phosphorylated AKT and ER

    Effect of Ag Doping on the Electronic Structure and Optical Properties of ZnO(0001) Surface

    No full text
    Using first-principle calculations, the geometrical structure, the electronic and optical properties of Ag-doped ZnO(0001) surface have been investigated. We found that Ag-doped ZnO(0001) surface is more easily formed on the first layer. On the other hand, the doped surface has gradually become an equipotential body, showing obvious metallic characteristics. We found that a new peak appeared in the low energy region after Ag doping, which was mainly due to the electron transition between the two orbital levels of Ag-4d and O-2p
    corecore