24 research outputs found

    SARS-CoV-2 mRNA vaccination elicits robust antibody responses in children

    Get PDF
    Publisher Copyright: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY)Although children have been largely spared from coronavirus disease 2019 (COVID-19), the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with increased transmissibility, combined with fluctuating mask mandates and school reopenings, has led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remain unclear. Here, we aimed to deeply profile the vaccine-induced humoral immune response in 6- to 11-year-old children receiving either a pediatric (50 μg) or adult (100 μg) dose of the mRNA-1273 vaccine and to compare these responses to vaccinated adults, infected children, and children who experienced multisystem inflammatory syndrome in children (MIS-C). Children elicited an IgG-dominant vaccine-induced immune response, surpassing adults at a matched 100-μg dose but more variable immunity at a 50-μg dose. Irrespective of titer, children generated antibodies with enhanced Fc receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron-specific receptor binding domain, but robustly preserved omicron spike protein binding. Fc receptor binding capabilities were also preserved in a dose-dependent manner. These data indicate that both the 50- and 100-μg doses of mRNA vaccination in children elicit robust cross-VOC antibody responses and that 100-μg doses in children result in highly preserved omicron-specific functional humoral immunity.publishersversionPeer reviewe

    Epidemiological and Immunological Features of Obesity and SARS-CoV-2

    Get PDF
    Obesity is a key correlate of severe SARS-CoV-2 outcomes while the role of obesity on risk of SARS-CoV-2 infection, symptom phenotype, and immune response remain poorly defined. We examined data from a prospective SARS-CoV-2 cohort study to address these questions. Serostatus, body mass index, demographics, comorbidities, and prior COVID-19 compatible symptoms were assessed at baseline and serostatus and symptoms monthly thereafter. SARS-CoV-2 immunoassays included an IgG ELISA targeting the spike RBD, multiarray Luminex targeting 20 viral antigens, pseudovirus neutralization, and T cell ELISPOT assays. Our results from a large prospective SARS-CoV-2 cohort study indicate symptom phenotype is strongly influenced by obesity among younger but not older age groups; we did not identify evidence to suggest obese individuals are at higher risk of SARS-CoV-2 infection; and remarkably homogenous immune activity across BMI categories suggests immune protection across these groups may be similar

    Potential of Murine IgG1 and Human IgG4 to Inhibit the Classical Complement and Fcγ Receptor Activation Pathways

    No full text
    IgG antibodies (Abs) mediate their effector functions through the interaction with Fcγ receptors (FcγRs) and the complement factors. The main IgG-mediated complement activation pathway is induced through the binding of complement C1q to IgG Abs. This interaction is dependent on antigen-dependent hexamer formation of human IgG1 and IgG3 to increase the affinity for the six-headed C1q molecule. By contrast, human IgG4 fails to bind to C1q. Instead, it has been suggested that human IgG4 can block IgG1 and IgG3 hexamerization required for their binding to C1q and activating the complement. Here, we show that murine IgG1, which functionally resembles human IgG4 by not interacting with C1q, inhibits the binding of IgG2a, IgG2b, and IgG3 to C1q in vitro, and suppresses IgG2a-mediated complement activation in a hemolytic assay in an antigen-dependent and IgG subclass-specific manner. From this perspective, we discuss the potential of murine IgG1 and human IgG4 to block the complement activation as well as suppressive effects of sialylated IgG subclass Abs on FcγR-mediated immune cell activation. Accumulating evidence suggests that both mechanisms seem to be responsible for preventing uncontrolled IgG (auto)Ab-induced inflammation in mice and humans. Distinct IgG subclass distributions and functionally opposite IgG Fc glycosylation patterns might explain different outcomes of IgG-mediated immune responses and provide new therapeutic options through the induction, enrichment, or application of antigen-specific sialylated human IgG4 to prevent complement and FcγR activation as well

    Image_2_Potential of Murine IgG1 and Human IgG4 to Inhibit the Classical Complement and Fcγ Receptor Activation Pathways.tif

    No full text
    <p>IgG antibodies (Abs) mediate their effector functions through the interaction with Fcγ receptors (FcγRs) and the complement factors. The main IgG-mediated complement activation pathway is induced through the binding of complement C1q to IgG Abs. This interaction is dependent on antigen-dependent hexamer formation of human IgG1 and IgG3 to increase the affinity for the six-headed C1q molecule. By contrast, human IgG4 fails to bind to C1q. Instead, it has been suggested that human IgG4 can block IgG1 and IgG3 hexamerization required for their binding to C1q and activating the complement. Here, we show that murine IgG1, which functionally resembles human IgG4 by not interacting with C1q, inhibits the binding of IgG2a, IgG2b, and IgG3 to C1q in vitro, and suppresses IgG2a-mediated complement activation in a hemolytic assay in an antigen-dependent and IgG subclass-specific manner. From this perspective, we discuss the potential of murine IgG1 and human IgG4 to block the complement activation as well as suppressive effects of sialylated IgG subclass Abs on FcγR-mediated immune cell activation. Accumulating evidence suggests that both mechanisms seem to be responsible for preventing uncontrolled IgG (auto)Ab-induced inflammation in mice and humans. Distinct IgG subclass distributions and functionally opposite IgG Fc glycosylation patterns might explain different outcomes of IgG-mediated immune responses and provide new therapeutic options through the induction, enrichment, or application of antigen-specific sialylated human IgG4 to prevent complement and FcγR activation as well.</p

    Image_1_Potential of Murine IgG1 and Human IgG4 to Inhibit the Classical Complement and Fcγ Receptor Activation Pathways.tif

    No full text
    <p>IgG antibodies (Abs) mediate their effector functions through the interaction with Fcγ receptors (FcγRs) and the complement factors. The main IgG-mediated complement activation pathway is induced through the binding of complement C1q to IgG Abs. This interaction is dependent on antigen-dependent hexamer formation of human IgG1 and IgG3 to increase the affinity for the six-headed C1q molecule. By contrast, human IgG4 fails to bind to C1q. Instead, it has been suggested that human IgG4 can block IgG1 and IgG3 hexamerization required for their binding to C1q and activating the complement. Here, we show that murine IgG1, which functionally resembles human IgG4 by not interacting with C1q, inhibits the binding of IgG2a, IgG2b, and IgG3 to C1q in vitro, and suppresses IgG2a-mediated complement activation in a hemolytic assay in an antigen-dependent and IgG subclass-specific manner. From this perspective, we discuss the potential of murine IgG1 and human IgG4 to block the complement activation as well as suppressive effects of sialylated IgG subclass Abs on FcγR-mediated immune cell activation. Accumulating evidence suggests that both mechanisms seem to be responsible for preventing uncontrolled IgG (auto)Ab-induced inflammation in mice and humans. Distinct IgG subclass distributions and functionally opposite IgG Fc glycosylation patterns might explain different outcomes of IgG-mediated immune responses and provide new therapeutic options through the induction, enrichment, or application of antigen-specific sialylated human IgG4 to prevent complement and FcγR activation as well.</p

    Selective SARS-CoV2 BA.2 escape of antibody Fc/Fc-receptor interactions

    No full text
    Summary: The number of mutations in the omicron (B.1.1.529) BA.1 variant of concern led to an unprecedented evasion of vaccine induced immunity. However, despite rise in global infections, severe disease did not increase proportionally and is likely linked to persistent recognition of BA.1 by T cells and non-neutralizing opsonophagocytic antibodies. Yet, the emergence of new sublineage BA.2, which is more transmissible than BA.1 despite relatively preserved neutralizing antibody responses, has raised the possibility that BA.2 may evade other vaccine-induced responses. Here, we comprehensively profiled the BNT162b2 vaccine-induced response to several VOCs, including omicron BA.1 and BA.2. While vaccine-induced immune responses were compromised against both omicron sublineages, vaccine-induced antibody isotype titers, and non-neutralizing Fc effector functions were attenuated to the omicron BA.2 spike compared to BA.1. Conversely, FcγR2a and FcγR2b binding was elevated to BA.2, albeit lower than BA.1 responses, potentially contributing to persistent protection against severity of disease

    Evolution of functional antibodies following acute Epstein-Barr virus infection

    No full text
    While Epstein-Barr virus causes mostly asymptomatic infection, associated malignancies, and autoimmune and lymphoproliferative diseases occur. To dissect the evolution of humoral immune responses over the course of EBV infection and to gain a better understanding of the potential contribution of antibody (Ab) function to viral control, we comprehensively profiled Ab specificities and Fc-functionalities using systems serology and VirScan. Ab functions against two early (p18 and p47/54) and two latent (gp350/220 and EBNA-1) EBV proteins were overall modest and/or short-lived, differing from humoral responses induced during acute infection by other viruses such as HIV. In the first year post infection, only p18 elicited robust IgM-driven complement deposition and IgG-driven neutrophil phagocytosis while responses against EBNA-1 were largely Fc-functionally silent and only matured during chronic infection to drive phagocytosis. In contrast, Abs against Influenza virus readily mediated broad Fc-Activity in all participants. These data suggest that EBV evades the induction of robust Fc-functional Abs, potentially due to the virus life cycle, switching from lytic to latent stages during infection

    Viral Rebound Kinetics Correlate with Distinct HIV Antibody Features

    No full text
    © 2021 Bartsch et al. Plasma viremia reoccurs in most HIV-infected individuals once antiretro-viral therapy (ART) is interrupted. The kinetics of viral rebound, specifically the time until plasma virus becomes detectable, differ quite substantially between individuals, and associations with virological and immunological factors have been suggested. Standard clinical measures, like CD4 T-cell counts and plasma HIV RNA levels, how-ever, are poor predictive markers. Antibody features, including Fc functionality and Fc glycosylation have been identified as sensitive surrogates for disease activity in multiple diseases. Here, we analyzed HIV-specific antibody quantities and qualitative differences like antibody-mediated functions, Fc gamma receptor (FcγR) binding, and IgG Fc glycosylation as well as cytokine profiles and cellular HIV DNA and RNA levels in 23 ART-suppressed individuals prior to undergoing an analytical ART interruption (ATI). We found that antibodies with distinct functional properties and Fc glycan signatures separated individuals into early and delayed viral rebounders (≤4 weeks versus >4 weeks) and tracked with levels of inflammatory cytokines and transcriptional activity of the viral reservoir. Specifically, individuals with early viral rebound exhibited higher levels of total HIV-specific IgGs carrying inflammatory Fc glycans, while delayed rebounders showed an enrichment of highly functional antibodies. Overall, only four features, including enhanced antibody-mediated NK cell activation in delayed rebounders, were necessary to discriminate the groups. These data suggest that antibody features can be used as sensitive indicators of HIV disease activity and could be included in future ATI studies. IMPORTANCE Plasma viremia reoccurs in most HIV-infected individuals once antiretro-viral therapy is interrupted, and interindividual differences in the kinetics of viral rebound have been associated with virological and immunological factors. Antibody features, including Fc functionality and Fc glycosylation, have been identified as sensitive surrogates for disease activity in multiple diseases. Here, we systematically analyzed HIV-specific antibody quantities and qualitative differences in 23 ART-suppressed individuals prior to undergoing an analytical ART interruption (ATI). We found that antibodies with distinct functional properties and Fc glycan signatures separated individuals into early and delayed viral rebounders and tracked with levels of inflammatory cytokines and transcriptional activity of the viral reservoir. These data suggest that antibody features can be used as sensitive indicators of HIV disease activity and could be included in future HIV eradication studies
    corecore