55 research outputs found

    Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements

    Get PDF
    Recently, we demonstrated that hematopoietic stem/progenitor cell (HSPC) mobilization followed by intravenous injection of integrating, helper-dependent adenovirus HDAd5/35++ vectors resulted in efficient transduction of long-term repopulating cells and disease amelioration in mouse models after in vivo selection of transduced HSPCs. Acute innate toxicity associated with HDAd5/35++ injection was controlled by appropriate prophylaxis, making this approach feasible for clinical translation. Our ultimate goal is to use this technically simple in vivo HSPC transduction approach for gene therapy of thalassemia major or sickle cell disease. A cure of these diseases requires high expression levels of the therapeutic protein (γ- or β-globin), which is difficult to achieve with lentivirus vectors because of their genome size limitation not allowing larger regulatory elements to be accommodated. Here, we capitalized on the 35 kb insert capacity of HDAd5/35++ vectors to demonstrate that transcriptional regulatory regions of the β-globin locus with a total length of 29 kb can efficiently be transferred into HSPCs. The in vivo HSPC transduction resulted in stable γ-globin levels in erythroid cells that conferred a complete cure of murine thalassemia intermedia. Notably, this was achieved with a minimal in vivo HSPC selection regimen

    Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors

    Get PDF
    We tested a new in vivo hematopoietic stem cell (HSC) transduction/selection approach in rhesus macaques using HSC-tropic, integrating, helper-dependent adenovirus vectors (HDAd5/35++) designed for expression of human γ−globin in red blood cells (RBCs) to treat hemoglobinopathies. We show that HDAd5/35++ vectors preferentially transduce HSCs in vivo after intravenous injection into G-CSF/AMD3100-mobilized animals, and that transduced cells return to the bone marrow and spleen. The approach was well tolerated and activation of proinflammatory cytokines that is usually associated with intravenous adenovirus vector injection, was successfully blunted by pre-treatment with dexamethasone in combination with IL-1 and IL-6 receptor blockers. Using our MGMT(P140K)-based in vivo selection approach, γ-globin(+) RBCs increased in all animals with levels up to 90%. After selection, the percentage of γ-globin(+) RBCs declined most likely due to an immune response against human transgene products. Our biodistribution data indicate that γ-globin(+) RBCs in the periphery were mostly derived from mobilized HSCs that homed to the spleen. Integration site analysis revealed a polyclonal pattern and no genotoxicity related to transgene integrations. This is the first proof-of-concept study in nonhuman primates that in vivo HSC gene therapy could be feasible in humans without the need for high-dose chemotherapy conditioning and HSC transplantation

    DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome.</p> <p>Results</p> <p>Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV<it>-tk</it>) gene in a vector expressing also the <it>neo</it><sup>R </sup>gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations.</p> <p>Conclusions</p> <p>We demonstrated that all sequences identified by their CTCF binding both <it>in vitro </it>and <it>in vivo </it>had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells.</p

    Clinical trials for stem cell therapies

    Get PDF
    In recent years, clinical trials with stem cells have taken the emerging field in many new directions. While numerous teams continue to refine and expand the role of bone marrow and cord blood stem cells for their vanguard uses in blood and immune disorders, many others are looking to expand the uses of the various types of stem cells found in bone marrow and cord blood, in particular mesenchymal stem cells, to uses beyond those that could be corrected by replacing cells in their own lineage. Early results from these trials have produced mixed results often showing minor or transitory improvements that may be attributed to extracellular factors. More research teams are accelerating the use of other types of adult stem cells, in particular neural stem cells for diseases where beneficial outcome could result from either in-lineage cell replacement or extracellular factors. At the same time, the first three trials using cells derived from pluripotent cells have begun

    2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-dependent Thalassemia

    Get PDF
    Beta-thalassemia and particularly its transfusion-dependent form (TDT) is a demanding clinical condition, requiring life-long care and follow-up, ideally in specialized centers and by multidisciplinary teams of experts. Despite the significant progress in TDT diagnosis and treatment over the past decades that has dramatically improved patients' prognosis, its management remains challenging. On one hand, diagnostic and therapeutic advances are not equally applied to all patients across the world, particularly in several high-prevalence eastern regions. On the other, healthcare systems in low-prevalence western countries that have recently received large numbers of migrant thalassemia patients, were not ready to address patients' special needs. Thalassaemia International Federation (TIF), a global patient-driven umbrella federation with 232 member-associations in 62 countries, strives for equal access to quality care for all patients suffering from thalassemia or other hemoglobinopathies in every part of the world by promoting education, research, awareness, and advocacy. One of TIF's main actions is the development and dissemination of clinical practice guidelines for the management of these patients. In 2021, the fourth edition of TIF's guidelines for the management of TDT was published. The full text provides detailed information on the management of TDT patients and the clinical presentation, pathophysiology, diagnostic approach, and treatment of disease complications or other clinical entities that may occur in these patients, while also covering relevant psychosocial and organizational issues. The present document is a summary of the 2021 TIF guidelines for TDT that focuses mainly on clinical practice issues and recommendations

    Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets

    Get PDF
    Addressing the problem of vascularization is of vital importance when engineering three-dimensional (3D) tissues. Endothelial cells are increasingly used in tissue-engineered constructs to obtain prevascularization and to enhance in vivo neovascularization. Rat bone marrow stromal cells were cultured in thermoresponsive dishes under osteogenic conditions with human umbilical vein endothelial cells (HUVECs) to obtain homotypic or heterotypic cell sheets (CSs). Cells were retrieved as sheets from the dishes after incubation at 20 °C. Monoculture osteogenic CSs were stacked on top of homotypic or heterotypic CSs, and subcutaneously implanted in the dorsal flap of nude mice for 7 days. The implants showed mineralized tissue formation under both conditions. Transplanted osteogenic cells were found at the new tissue site, demonstrating CS bone-inductive effect. Perfused vessels, positive for human CD31, confirmed the contribution of HUVECs for the neovascularization of coculture CS constructs. Furthermore, calcium quantification and expression of osteocalcin and osterix genes were higher for the CS constructs, with HUVECs demonstrating the more robust osteogenic potential of these constructs. This work demonstrates the potential of using endothelial cells, combined with osteogenic CSs, to increase the in vivo vascularization of CS-based 3D constructs for bone tissue engineering purposes.We would like to acknowledge Mariana T Cerqueira for the illustration in Figure 1. This study was supported by Formation of Innovation Center for Fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science and Technology 'Cell Sheet Tissue Engineering Center (CSTEC)' and the Global CUE program, the Multidisciplinary Education and Research Center for Regenerative Medicine (MERCREM), from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Financial support to RP Pirraco by the Portuguese Foundation for Science and Technology (FCT) through the PhD Grant SFRH/BD/44893/2008 is also acknowledged

    FTY720 Suppresses Liver Tumor Metastasis by Reducing the Population of Circulating Endothelial Progenitor Cells

    Get PDF
    Background: Surgical procedures such as liver resection and liver transplantation are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor recurrence and metastasis after liver surgery remains a major problem. Recent studies have shown that hepatic ischemia-reperfusion (I/R) injury and endothelial progenitor cells (EPCs) contribute to tumor growth and metastasis. We aim to investigate the mechanism of FTY720, which was originally applied as an immunomodulator, on suppression of liver tumor metastasis after liver resection and partial hepatic I/R injury. Methodology/Principal Findings: An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Two weeks after orthotopic liver tumor implantation, the rats underwent liver resection for tumor-bearing lobe and partial hepatic I/R injury. FTY720 (2 mg/kg) was administered through the inferior caval vein before and after I/R injury. Blood samples were taken at days 0, 1, 3, 7, 14, 21 and 28 for detection of circulating EPCs (CD133+CD34+). Our results showed that intrahepatic and lung metastases were significantly inhibited together with less tumor angiogenesis by FTY720 treatment. The number of circulating EPCs was also significantly decreased by FTY720 treatment from day 7 to day 28. Hepatic gene expressions of CXCL10, VEGF, CXCR3, CXCR4 induced by hepatic I/R injury were down-regulated in the treatment group. Conclusions/Significance: FTY720 suppressed liver tumor metastasis after liver resection marred by hepatic I/R injury in a rat liver tumor model by attenuating hepatic I/R injury and reducing circulating EPCs. © 2012 Li et al.published_or_final_versio

    Liver regeneration - mechanisms and models to clinical application

    Get PDF

    A chromatin insulator protects retrovirus vectors from chromosomal position effects

    Full text link
    • …
    corecore