25 research outputs found

    Gaining Greater Insight into HCV Emergence in HIV-Infected Men Who Have Sex with Men: The HEPAIG Study

    Get PDF
    OBJECTIVES: The HEPAIG study was conducted to better understand Hepatitis C virus (HCV) transmission among human immuno-deficiency (HIV)-infected men who have sex with men (MSM) and assess incidence of HCV infection among this population in France. METHODS AND RESULTS: Acute HCV infection defined by anti-HCV or HCV ribonucleic acid (RNA) positivity within one year of documented anti-HCV negativity was notified among HIV-infected MSM followed up in HIV/AIDS clinics from a nationwide sampling frame. HIV and HCV infection characteristics, HCV potential exposures and sexual behaviour were collected by the physicians and via self-administered questionnaires. Phylogenetic analysis of the HCV-NS5B region was conducted. HCV incidence was 48/10 000 [95% Confidence Interval (CI):43-54] and 36/10 000 [95% CI: 30-42] in 2006 and 2007, respectively. Among the 80 men enrolled (median age: 40 years), 55% were HIV-diagnosed before 2000, 56% had at least one sexually transmitted infection in the year before HCV diagnosis; 55% were HCV-infected with genotype 4 (15 men in one 4d-cluster), 32.5% with genotype 1 (three 1a-clusters); five men were HCV re-infected; in the six-month preceding HCV diagnosis, 92% reported having casual sexual partners sought online (75.5%) and at sex venues (79%), unprotected anal sex (90%) and fisting (65%); using recreational drugs (62%) and bleeding during sex (55%). CONCLUSIONS: This study emphasizes the role of multiple unprotected sexual practices and recreational drugs use during sex in the HCV emergence in HIV-infected MSM. It becomes essential to adapt prevention strategies and inform HIV-infected MSM with recent acute HCV infection on risk of re-infection and on risk-reduction strategies

    Complex index refraction tomography with sub ?/6-resolution

    No full text
    The present invention discloses a method to improve the image resolution of a microscope. This improvement is based on the mathematical processing of the complex field computed from the measurements with a microscope of the wave emitted or scattered by the specimen. This wave is, in a preferred embodiment, electromagnetic or optical for an optical microscope, but can be also of different kind like acoustical or matter waves. The disclosed invention makes use of the quantitative phase microscopy techniques known in the sate of the art or to be invented. In a preferred embodiment, the complex field provided by Digital Holographic Microscopy (DHM), but any kind of microscopy derived from quantitative phase microscopy: modified DIC, Shack- Hartmann wavefront analyzer or any analyzer derived from a similar principle, such as multi-level lateral shearing interferometers or common-path interferometers, or devices that convert stacks of intensity images (transport if intensity techniques: TIT) into quantitative phase image can be used, provided that they deliver a comprehensive measure of the complex scattered wavefield. The hereby-disclosed method delivers superresolution microscopic images of the specimen, i.e. images with a resolution beyond the Rayleigh limit of the microscope. It is shown that the limit of resolution with coherent illumination can be improved by a factor of 6 at least. It is taught that the gain in resolution arises from the mathematical digital processing of the phase as well as of the amplitude of the complex field scattered by the observed specimen. In a first embodiment, the invention teaches how the experimental observation of systematically occurring phase singularities in phase imaging of sub-Rayleigh distanced objects can be exploited to relate the locus of the phase singularities to the sub-Rayleigh distance of point sources, not resolved in usual diffraction limited microscopy. In a second, preferred imbodiment, the disclosed method teaches how the image resolution is improved by complex deconvolution. Accessing the object's scattered complex field - containing the information coded in the phase - and deconvolving it with the reconstructed complex transfer function (CTF) is at the basis of the disclosed method. In a third, preferred imbodiment, it is taught how the concept of "Synthetic Coherent Transfer Function" (SCTF), based on Debye scalar or Vector model includes experimental parameters of MO and how the experimental Amplitude Point Spread Functions (APSF) are used for the SCTF determination. It is also taught how to derive APSF from the measurement of the complex field scattered by a nanohole in a metallic film. In a fourth imbodiment, the invention teaches how the limit of resolution can be extended to a limit of ?/6 or smaller based angular scanning. In a fifth imbodiment, the invention teaches how the presented method can generalized to a tomographic approach that ultimately results in super-resolved 3D refractive index reconstruction

    Microscopy image resolution improvement by deconvolution of complex fields

    No full text
    Based on truncated inverse filtering, a theory for deconvolution of complex fields is studied. The validity of the theory is verified by comparing with experimental data from digital holographic microscopy (DHM) using a high-NA system (NA=0.95). Comparison with standard intensity deconvolution reveals that only complex deconvolution deals correctly with coherent cross-talk. With improved image resolution, complex deconvolution is demonstrated to exceed the Rayleigh limit. Gain in resolution arises by accessing the objects complex field - containing the information encoded in the phase - and deconvolving it with the reconstructed complex transfer function (CTF). Synthetic (based on Debye theory modeled with experimental parameters of MO) and experimental amplitude point spread functions (APSF) are used for the CTF reconstruction and compared. Thus, the optical system used for microscopy is characterized quantitatively by its APSF. The role of noise is discussed in the context of complex field deconvolution. As further results, we demonstrate that complex deconvolution does not require any additional optics in the DHM setup while extending the limit of resolution with coherent illumination by a factor of at least 1.64

    Beyond the lateral resolution limit by phase imaging

    No full text
    We present a theory stating how to overcome the classical Rayleigh-resolution limit. It is based upon a new resolution criterion in phase of coherent imaging process and its spatial resolution is thought to be only SNR limited. Recently, the experimental observation of systematically occurring phase singularities in coherent imaging of sub-Rayleigh distanced objects has been reported.1 The phase resolution criterion relies on the unique occurrence of phase singularities. A priori, coherent imaging system's resolution can be extended to Abbe's limit.2 However, by introducing a known phase difference, the lateral as well as the longitudinal resolution can be tremendously enlarged. The experimental setup is based on Digital Holographic Microscopy (DHM), an interferometric method providing access to the complex wave front. In off-axis transmission configuration, sub-wavelength nano-metric holes on a metallic film acts as the customized high-resolution test target. The nano-metric apertures are drilled with focused ion beam (FIB) and controlled by scanning electron microscopy (SEM). In this manner, Rayleighs classical two-point resolution condition can be rebuilt by interfering complex fields emanated from multiple single circular apertures on an opaque metallic film. By introducing different offset phases, enhanced resolution is demonstrated. Furthermore, the measurements can be exploited analytically or within the post processing of sampling a synthetic complex transfer function (CTF)

    Sub-Rayleigh resolution by phase imaging

    No full text
    We report the experimental observation of systematically occurring phase singularities in coherent imaging of sub-Rayleigh distanced objects. A theory that relates the observation to the sub-Rayleigh distance is presented and compared with experimental measurements. As a consequence, the limit of resolution with coherent illumination is extended by a factor of 1.64Ă—
    corecore