133 research outputs found

    Electrical properties of yttrium calcium oxyborate crystal annealed at high temperature and low oxygen partial pressure

    Get PDF
    The yttrium calcium oxyborate crystal (YCa 4 O(BO 3 ) 3 , YCOB) has been actively studied for high-temperature piezoelectric sensing applications. In this work, the stability of electric properties of YCOB crystal annealed in critical conditions (high-temperatures of 900-1100 °C with a low oxygen partial pressure of 4 x 10 −6 atm for 24 h) was investigated and the recovery mechanism for the electrical resisitivity, dielectric permittivity and dielectric loss were studied, taking advantage of the X-ray photoelectron spectra and the first principle calculations. The electrical resistivity of the annealed YCOB crystal was slightly decreased when compared to the pristine counterpart, being (2-5) x 10 7 Ω cm at 850 °C. The dielectric permittivity and dielectric loss were found to increase after annealing, showing recoverable behaviours after thermal treatment above 650 °C in air. The calculated vacancy formation energy indicate that the oxygen vacancy is the dominant defects in YCOB. The formation of oxygen vacancy weakens the chemical bonding strength between B (Ca or Y) and O atoms, introduces extra donor levels in the band gap, which excites the electrons to conduction band more easily thus enhances the electrical conductivity and dielectric loss. The recovered electrical properties are believed to be associated with the reduced vacancy defects at elevated temperatures in air

    Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    Get PDF
    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions

    Modeling and simulations of the cascading failure of multiple interdependent R&D networks under risk propagation

    Full text link
    In this paper, we study the robustness of multiple interrelated R&D networks under risk propagation. Firstly, using a bi-partite graph to represent the interrelated R&D networks is emphasized and proposed. Secondly, a risk propagation model is built by defining risk load and risk capacity of each enterprise on a specific R&D network, Thirdly, we use simulations to study risk propagation in interrelated R&D networks. Our results indicate that there exist three critical thresholds to quantify the robustness of R&D networks. Risk propagation in R&D networks is highly affected by the heterogeneity of all enterprises' scales and risk capacities

    Research on Effectiveness Evaluation of Organizational Structure of Complex Aviation Product Development Project

    No full text
    As a highly complex project, the complex aviation product research and development project requires many participants. In order to ensure the effectively process of complex aviation product research and development project, it is necessary to evaluate the effectiveness of the project’s organizational structure. Five first-level key indicators of goal accomplishment, internal processes fluency, resources management ability, stakeholders’ support and environmental adaptation are set. Five first-level key indicators are further broken down to establish the effectiveness evaluation indicator system of complex aviation product research and development project. The analytic hierarchy process method and grey clustering evaluation model based on mixed probability function of central point are used to perform the effectiveness evaluation of organizational structure for complex aviation product research and development project. The evaluation model is applied to a certain instance to verify the effectiveness of the evaluation model. The results show that the model can evaluate the organizational structure effectiveness of complex aviation product research and development project

    Sediment Depth-Dependent Spatial Variations of Bacterial Communities in Mud Deposits of the Eastern China Marginal Seas

    No full text
    The mud sediments of the eastern China marginal seas (ECMS) are deposited under different hydrodynamic conditions with different organic matter sources. These events have been demonstrated to exert significant influences on microbial communities and biogeochemical processes in surface sediments. However, the extent to which such effects occur in subsurface microbial communities remains unclear. In this study, both horizontal and vertical (five sites, each for eight layers) distributions of bacterial abundance and community composition in mud deposits of the South Yellow Sea (SYS) and East China Sea (ECS) were investigated by quantitative PCR and Illumina sequencing of the 16S rRNA gene. Both bacterial abundance and diversity were higher in the ECS than in the SYS, and tended to be higher in up than in deep layers. Proteobacteria (JTB255 marine benthic group), Acidobacteria and Bacteroidetes were dominant in the upper layers, whereas Lactococcus, Pseudomonas, and Dehalococcoidia were enriched in the deep layers. The bacterial communities in surface and subsurface sediments showed different inter-taxa relationships, indicating contrasting co-occurrence patterns. The bacterial communities in the upper layer samples clustered in accordance with mud zones, whereas those in the deep layer samples of all sites tended to cluster together. TOC ÎŽ13C and TON ÎŽ15N significantly affected the bacterial community composition, suggesting that the abundance and composition of organic matter played critical roles in shaping of sedimentary bacterial communities. This study provides novel insights into the distribution of subsurface bacterial communities in mud deposits of the ECMS, and provides clues for understanding the biogeochemical cycles in this area

    Estimation of the Underlying F0 Range of a Speaker from the Spectral Features of a Brief Speech Input

    No full text
    From a very brief speech, human listeners can estimate the pitch range of the speaker and normalize pitch perception. Spectral features which inherently involve both articulatory and phonatory characteristics were speculated to play roles in this process, but few were reported to directly correlate with speaker’s F0 range. To mimic this human auditory capability and validate the speculation, in a preliminary study we proposed an LSTM-based method to estimate speaker’s F0 range from a 300 ms-long speech input, which turned out to outperform the conventional method. By two more experiments, this study further improved the method and verified its validity in estimating the speaker-specific underlying F0 range. After incorporating a novel measurement of F0 range and a multi-task training approach, Experiment 1 showed that the refined model gave more accurate estimates than the initial model. Based on a Japanese-Chinese bilingual parallel speech corpus, Experiment 2 found that the F0 ranges estimated with the model from the Chinese speech and the model from the Japanese speech produced by the same set of speakers had no significant difference, whereas the conventional method showed significant difference. The results indicate that the proposed spectrum-based method captures the speaker-specific underlying F0 range which is independent of the linguistic content

    Mesenchymal Stem Cell-Derived Exosomes Improve Functional Recovery in Rats After Traumatic Brain Injury: A Dose-Response and Therapeutic Window Study

    No full text
    Background. Mesenchymal stem cell (MSC)-derived exosomes play a critical role in regenerative medicine. Objective. To determine the dose- and time-dependent efficacy of exosomes for treatment of traumatic brain injury (TBI). Methods. Male rats were subjected to a unilateral moderate cortical contusion. In the dose-response study, animals received a single intravenous injection of exosomes (50, 100, 200 ”g per rat) or vehicle, with treatment initiated at 1 day after injury. In the therapeutic window study, animals received a single intravenous injection of 100 ”g exosomes or vehicle starting at 1, 4, or 7 days after injury. Neurological functional tests were performed weekly after TBI for 5 weeks. Spatial learning was measured on days 31 to 35 after TBI using the Morris water maze test. Results. Compared with the vehicle, regardless of the dose and delay in treatment, exosome treatment significantly improved sensorimotor and cognitive function, reduced hippocampal neuronal cell loss, promoted angiogenesis and neurogenesis, and reduced neuroinflammation. Exosome treatment at 100 ”g per rat exhibited a significant therapeutic effect compared with the 50- or 200-”g exosome groups. The time-dependent exosome treatment data demonstrated that exosome treatment starting at 1 day post-TBI provided a significantly greater improvement in functional and histological outcomes than exosome treatments at the other 2 delayed treatments. Conclusions. These results indicate that exosomes have a wide range of effective doses for treatment of TBI with a therapeutic window of at least 7 days postinjury. Exosomes may provide a novel therapeutic intervention in TBI

    Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries

    Get PDF
    © 2020, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature. Ti-based anode materials in sodium ion batteries have attracted extensive interests due to its abundant resources, low toxicity, easy synthesis and long cycle life. However, low Coulombic efficiency and limited specific capacity affect their applications. Here, cubic-phase TiP2O7 is examined as anode materials, using in-situ/ex-situ characterization techniques. It is concluded that the redox reactions of Ti4+/Ti3+ and Ti3+/Ti0 consecutively occur during the discharge/charge processes, both of which are highly reversible. These reactions make the specific capacity of TiP2O7 even higher than the case of TiO2 that only contains a simple anion, O2−. Interestingly, Ti species participate only one of the redox reactions, due to the remarkable difference in local structures related to the sodiation process. The stable discharge/charge products in TiP2O7 reduce the side reactions and improve the Coulombic efficiency as compared to TiO2. These features make it a promising Ti-based anode for sodium ion batteries. Therefore, TiP2O7@C microflowers exhibit excellent electrochemical performances, ~ 109 mAh·g−1 after 10,000 cycles at 2 A·g−1, or 95.2 mAh·g−1 at 10 A·g−1. The results demonstrate new opportunities for advanced Ti-based anodes in sodium ion batteries. [Figure not available: see fulltext.
    • 

    corecore