8 research outputs found

    Additional file 1: Figure S1. of Intracellular delivery of messenger RNA by recombinant PP7 virus-like particles carrying low molecular weight protamine

    No full text
    2PP7-Protamine-GFP VLPs package the mRNAs of GFP or PP7 coat protein carrying LMWP. The templates of PCR in different lanes were as follows: lanes 1 and 6, purified VLPs sample; lanes 2 and 5, RNA extracted from related VLPs; Lanes 3 and 4, reverse transcription product of RNA extracted from related VLPs. M, DL 2000 DNA marker. Figure S2. The distribution of 2PP7-Protamine-GFP VLPs in the RM-1 cells. The black arrow indicates the location of 2PP7-Protamine-GFP VLPs. Figure S3. The sketch of structure of 2PP7-Protamine-GFP VLPs. (DOC 632 kb

    Three-Dimensional Conductive Gel Network as an Effective Binder for High-Performance Si Electrodes in Lithium-Ion Batteries

    No full text
    Silicon (Si) has been widely investigated as a candidate for lithium-ion batteries (LIBs) due to its extremely high specific capacity. The binders play a key role in fabricating high-performance Si electrodes which usually suffer from the huge volume expansion associated with the alloying and dealloying processes. Here we develop a facile route to prepare a three-dimensional (3D) conductive interpenetrated gel network as a novel binder for high-performance Si anodes through chemically cross-linking of acrylic acid monomer followed by the in situ polymerization of aniline. The excellent electrical conductivity, strong mechanical adhesion and high electrolyte uptake render the conductive gel network a potential binder for high-performance Si anodes. The resultant Si anodes exhibit excellent cycling stability, high Coulombic efficiency and superior rate capability, revealing better electrochemical properties compared to the Si anodes with conventional binders. The 3D conductive gel binder could not only accommodate the volume expansion and maintain electric connectivity, but also assist in the formation of stable solid electrolyte interphase (SEI) films. Such a strategy sheds light on the design of polymer binders in LIBs, especially for high-capacity electrode materials with huge volume changes during long-term cycling
    corecore