3 research outputs found

    EFFETS DE L’INCORPORATION D’ADJUVANTS MINÉRAUX SUR LES PROPRIÉTÉS DE CIMENTS GÉOPOLYMÈRES A BASE DE SCORIES VOLCANIQUES

    Get PDF
    Volcanic ashes are raw materials from geological deposits with a range of chemical compositions. When combined with suitable alkali activators they can be converted to geopolymers cement at ambient temperature. In this work we have investigated the possibility of use bauxite and oyster shells as mineral admixture in volcanic ashes, to enhance the properties of geopolymers synthesized. Different methods of analyses such as Fourier Transform Infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and Scanning Electron Microscopy (SEM) were used to assess the variation of setting time, linear shrinkage and 28 days compressive strength of geopolymers paste. The bauxite and the oyster shells were characterized using inductively coupled plasma (ICP-AES), thermal analyses (DSC/ATG), FTIR and X-ray diffractometry. The results of these analyses has showed that bauxite and oyster shells are respectively source of Al2O3 and of CaO, and can compensate the deficiencies of these oxides in volcanic ashes. Adding mineral admixture dissolve slowly in high alkaline medium. Addition of about 20% of bauxite or 10% of oyster shells is seen to decrease the setting time respectively from 415 to 275 min and 195 min. Linear shrinkage decrease with percentage of bauxite or of oyster shells added. Efflorescence is reduced by adding 10% of bauxite. 28 days compressive strength of geopolymeric materials increase respectively for 4.77 and 7.52% for 10% of bauxite or 20% of oyster shells added. More than these percentage additive has a deleterious effect on compressive strength due to crystalized mineralogical phases of the admixture

    Microstructural characterization and mechanical properties of bottom ash mortar

    No full text
    Coal Bottom Ash (CBA) is one of the widely-produced residues of coal incineration in thermal power plants. The annual extraction of such a huge amount of waste needs a massive transfer field, which constitutes a threat to the environment. However, the utilization of such residue as a fine aggregate in concrete can be an environmentally-friendly opportunity. Hence, the main purpose of this paper is to evaluate the microstructure and mechanical properties of the usage of BA as a fine aggregate replacement in mortar mixtures. It is observed that BA has a reactive fraction with pozzolanic characteristics. This provides stronger mortar when a medium volume of the material (up to 40%) is substituted. In addition, the CBA based mixture can be classified as lightweight concrete. The compressive strength value of the specimen using 40% CBA at 56 days was 55 MPa, which reached the same strength limit of control mortar mixture

    Particles size and distribution on the improvement of the mechanical performance of high strength solid solution based inorganic polymer composites: A microstructural approach

    No full text
    This research reports on the influence of particle size and distribution on the physical, mechanical and microstructural features of solid solutions (feldspathic materials) based inorganic polymer composites (IPCs). Both granite and pegmatite were ground to different degree of finess making four different granulometry with particles of 63, 80, 125 and 200 μm. The respective mixes receive 15 wt% of metakaolin and were activated with a well designed alkaline solution. Matrices obtained showed high compressive and flexural strengths in the range 101.2–131.3 MPa, and 29–35.5 MPa, respectively. It was observed that the optimum mechanical performance of these matrices can be achieved through a mix-design of different grades of granulometry. This was suggested by mechanism combining reactivity and particles packing. In fact, although it can be expected that the finess of the combination of the particles size under 63 μm might present the better reactivity, it is showing that the combination of fine, medium and coarse particles is efficient in achieving denser and tougher microstructure. Lower cumulative pore volume (17 mL g−1) of the composites based on pegmatite, value not far from that of natural stones, resulted in a higher impact resistance of 3.03 J. It was concluded that designing the feldspathic rock-based composites with high strengths appear as sustainable, low energy consumption and environmentally-friendly materials for the structural construction
    corecore