15 research outputs found

    Durability of atmospheric plasma sprayed thermal barrier coatings doped with rare earth for thermal and structural diagnosis

    No full text
    Les revĂȘtements de barriĂšre thermique (BT) Ă©laborĂ©s par APS sont couramment utilisĂ©s aujourd'hui dans le domaine des moteurs aĂ©ronautiques civils, en particulier sur les composants chauds des turbomachines tels que la chambre de combustion et les aubes de turbine. De nos jours, des moyens de diagnostic non intrusifs sont nĂ©cessaires pour surveiller et prĂ©dire la durĂ©e de vie des BT. Le dopage des BT avec des terres rares est une approche prometteuse pour atteindre cet objectif.Dans ce travail, CoCrAlY a Ă©tĂ© sĂ©lectionnĂ© comme bond coat, et les poudres YSZ vs YSZ:Eu (2mol% Eu3+ dopĂ©) ont Ă©tĂ© choisies pour top coat. Trois BT avec diffĂ©rentes structures de dopage ont Ă©tĂ© prĂ©parĂ©es avec succĂšs sur des substrats Hastelloy-X par APS. L'Ă©tude a comparĂ© les changements de performance (tĂ©nacitĂ© apparente Ă  la fracture interfaciale, morphologie TGO et mĂ©canisme de rupture) des trois types d'Ă©chantillons, Ă  savoir Type A (YSZ:Eu3+), Type B (YSZ:Eu3+ + YSZ) et Type C (YSZ), sous oxydation isotherme, choc thermique et oxydation cyclique. Dans le mĂȘme temps, les propriĂ©tĂ©s de photoluminescence des Ă©chantillons ont Ă©tĂ© mesurĂ©es.(1) Le dopage Eu3+ Ă  2mol% n'a pratiquement aucun effet sur la densitĂ© et les propriĂ©tĂ©s mĂ©caniques intrinsĂšques de la BT. Comme prĂ©vu, le dopage des ions Eu3+ rĂ©duit efficacement la conductivitĂ© thermique de la BT.(2) L'influence d'une faible quantitĂ© de dopage Eu3+ sur la microstructure et les propriĂ©tĂ©s mĂ©caniques des YSZ BT sous traitement d'oxydation isotherme peut ĂȘtre nĂ©gligĂ©e. AprĂšs avoir subi le mĂȘme traitement d'oxydation isotherme, aucune inter-diffusion ne se produit entre les diffĂ©rentes couches, la tĂ©nacitĂ© interfaciale apparente et l'Ă©paisseur de TGO des Types A et C sont approximativement les mĂȘmes, et la dĂ©faillance de BT se produit principalement au niveau de l’interface entre TGO / top coat.(3) Le dopage de Eu3+ inhibe dans une certaine mesure la croissance et l'Ă©volution de TGO pendant les essais de choc thermique et d’oxydation cyclique, ce qui a lĂ©gĂšrement amĂ©liorĂ© les propriĂ©tĂ©s mĂ©caniques du BT. Le mode de dĂ©faillance du revĂȘtement aprĂšs traitement thermique cyclique est la dĂ©faillance interne Ă  la top coat.(4) La BT de Type A est plus adaptĂ©e aux revĂȘtements pour applications capteurs. L'intensitĂ© de photoluminescence dĂ©tectĂ©e par Type B est nettement infĂ©rieure Ă  celle de Type A, car dans le Type B, les ions Eu3+ ne sont incorporĂ©s que dans la moitiĂ© du revĂȘtement Ă  proximitĂ© de la bond coat et son signal lumineux est par consĂ©quent partiellement absorbĂ© / diffusĂ© par la moitiĂ© supĂ©rieure de YSZ pur.(5) Il est possible d'utiliser Eu3+ comme Ă©lĂ©ment marqueur de l'histoire thermique des YSZ BT pour la dĂ©tection de l'histoire thermique in-situ. L'intensitĂ© lumineuse de Type A et B aprĂšs traitement thermique diminue avec l'augmentation du temps d'oxydation isotherme (100 Ă  800 h) en raison de la pollution de surface du Cr2O3 et du CoO diffusant Ă  partir de la bond coat aprĂšs un traitement Ă  haute tempĂ©rature de longue durĂ©e. Cela rĂ©duit l’intensitĂ© lumineuse de la BT en raison de la re-modification de la propriĂ©tĂ© optique du revĂȘtement. ParallĂšlement, l'augmentation de la porositĂ© a Ă©galement un rĂŽle nĂ©gatif pour diminuer la transmission lumineuse de la BT. A l’inverse, pour augmenter le nombre de chocs thermiques et de cycle d'oxydation, le temps de chauffage court favorise le comportement de transition de l'Ă©tat amorphe Ă  l'Ă©tat cristallin, tout en amĂ©liorant le niveau de cristallinitĂ© et la croissance des cristallites Ă  l'intĂ©rieur du revĂȘtement, augmentant ainsi l'intensitĂ© de photoluminescence.(6) Les diffĂ©rences entre zone fissurĂ©e et zone non fissurĂ©e pourraient ĂȘtre dĂ©tectĂ©es en utilisant la voie de photoluminescence. En gĂ©nĂ©ral, l'intensitĂ© de photoluminescence de la zone dĂ©fectueuse interne est plus forte que la zone intacte, ce qui est dĂ» Ă  la rĂ©flectivitĂ© interne Ă©levĂ©e du signal lumineux provoquĂ©e par la zone de dĂ©lamination.Thermal barrier coatings (TBCs) processed by Atmospheric Plasma Spraying (APS) are commonly used today in the field of civil aeroengine manufacturing especially on hot-end components such as combustion chamber and turbine blades. Nowadays, means of non-intrusive diagnosis are required to monitor and predict the lifetime of TBCs. Doping TBCs with rare earths is a promising approach to achieve this goal.In this work, CoCrAlY was selected as the metallic bond coat, and the standard YSZ powder vs YSZ:Eu (2mol% Eu3+ doped) powder were chosen for the ceramic top coat. Three TBCs with different doping structures were successfully prepared on Hastelloy-X substrates by APS method. The study compared the performance changes (apparent interfacial fracture toughness, TGO morphology and failure mechanism) of the three types of specimens, namely Type A (YSZ:Eu3+), Type B (YSZ:Eu3+ + YSZ) and Type C (YSZ), under isothermal oxidation, thermal shock, and cyclic oxidation treatment. At the same time, the photoluminescence properties of the specimens were measured, and conclusions were drawn :(1) 2mol% Eu3+ doping has almost no effect on the density and intrinsic mechanical properties of YSZ coating. As expected, the doping of Eu3+ ions effectively reduces the thermal conductivity of the YSZ coating.(2) The influence of a small amount of Eu3+ doping on the microstructure and mechanical properties of the YSZ TBCs under isothermal oxidation treatment can be neglected. After undergoing the same isothermal oxidation treatment, no inter-diffusion occurs between the various layers, the apparent interfacial fracture toughness and TGO thickness of Type A coating and Type C coating are approximately the same, and the failure of the TBCs mainly occurs at the TGO/coating interface.(3) The doping of Eu3+ element inhibits the TGO growth and evolution during thermal shock and oxidation cycle treatment tests to a certain extent, which slightly enhanced the microstructure and mechanical properties of the TBCs system. The failure mode of the coating after cyclic heat treatment is the internal failure inside the ceramic top coat.(4) Type A coating is more suitable for thermal barrier sensor coatings. The photoluminescence intensity detected by Type B system is significantly lower than that of Type A, because in Type B coating Eu3+ ions are only incorporated in the lower half of the YSZ coating close to the bond coat and its light signal is consequently partially absorbed/scattered by the upper half of pure YSZ.(5) It is very feasible to use Eu3+ dopant as a thermal history marker element of YSZ TBCs for in-situ thermal history detection. The luminous intensity of Type A and Type B specimens after heat treatment decreases with the increase of isothermal oxidation time (100 - 800h) because of the surface pollution of Cr2O3 and CoO diffusing from the bond coat after long-term high temperature oxidation treatment. This reduces the coating’s luminous intensity due to re-modification of the coating’s optical property. Meanwhile, the increase of porosity also has a negative role to decrease the light transmission of the coating. On the contrary, for increasing the number of thermal shock and oxidation cycle, the short heating time promotes the transition behaviour from amorphous to crystalline state, whereas improving the crystallinity level and the growth of crystallites inside the coating, thereby increasing the photoluminescence intensity.(6) Differences of cracked area and uncracked areas could be detected by using the photoluminescence route. Generally, the photoluminescence intensity of the internal defective area is stronger than the well-deposited area, which is because of the high internal reflectivity of light signal caused by the sub-surface in the delamination area. But it should be noticed that coating’s surface morphology, such as porosity, roughness and thickness change could significantly affect the photoluminescent NDT result

    DurabilitĂ© des revĂȘtements de barriĂšre thermique pulvĂ©risĂ© au plasma atmosphĂ©rique dopĂ©s aux terres rares pour le diagnostic thermique et structurel

    No full text
    Thermal barrier coatings (TBCs) processed by Atmospheric Plasma Spraying (APS) are commonly used today in the field of civil aeroengine manufacturing especially on hot-end components such as combustion chamber and turbine blades. Nowadays, means of non-intrusive diagnosis are required to monitor and predict the lifetime of TBCs. Doping TBCs with rare earths is a promising approach to achieve this goal.In this work, CoCrAlY was selected as the metallic bond coat, and the standard YSZ powder vs YSZ:Eu (2mol% Eu3+ doped) powder were chosen for the ceramic top coat. Three TBCs with different doping structures were successfully prepared on Hastelloy-X substrates by APS method. The study compared the performance changes (apparent interfacial fracture toughness, TGO morphology and failure mechanism) of the three types of specimens, namely Type A (YSZ:Eu3+), Type B (YSZ:Eu3+ + YSZ) and Type C (YSZ), under isothermal oxidation, thermal shock, and cyclic oxidation treatment. At the same time, the photoluminescence properties of the specimens were measured, and conclusions were drawn :(1) 2mol% Eu3+ doping has almost no effect on the density and intrinsic mechanical properties of YSZ coating. As expected, the doping of Eu3+ ions effectively reduces the thermal conductivity of the YSZ coating.(2) The influence of a small amount of Eu3+ doping on the microstructure and mechanical properties of the YSZ TBCs under isothermal oxidation treatment can be neglected. After undergoing the same isothermal oxidation treatment, no inter-diffusion occurs between the various layers, the apparent interfacial fracture toughness and TGO thickness of Type A coating and Type C coating are approximately the same, and the failure of the TBCs mainly occurs at the TGO/coating interface.(3) The doping of Eu3+ element inhibits the TGO growth and evolution during thermal shock and oxidation cycle treatment tests to a certain extent, which slightly enhanced the microstructure and mechanical properties of the TBCs system. The failure mode of the coating after cyclic heat treatment is the internal failure inside the ceramic top coat.(4) Type A coating is more suitable for thermal barrier sensor coatings. The photoluminescence intensity detected by Type B system is significantly lower than that of Type A, because in Type B coating Eu3+ ions are only incorporated in the lower half of the YSZ coating close to the bond coat and its light signal is consequently partially absorbed/scattered by the upper half of pure YSZ.(5) It is very feasible to use Eu3+ dopant as a thermal history marker element of YSZ TBCs for in-situ thermal history detection. The luminous intensity of Type A and Type B specimens after heat treatment decreases with the increase of isothermal oxidation time (100 - 800h) because of the surface pollution of Cr2O3 and CoO diffusing from the bond coat after long-term high temperature oxidation treatment. This reduces the coating’s luminous intensity due to re-modification of the coating’s optical property. Meanwhile, the increase of porosity also has a negative role to decrease the light transmission of the coating. On the contrary, for increasing the number of thermal shock and oxidation cycle, the short heating time promotes the transition behaviour from amorphous to crystalline state, whereas improving the crystallinity level and the growth of crystallites inside the coating, thereby increasing the photoluminescence intensity.(6) Differences of cracked area and uncracked areas could be detected by using the photoluminescence route. Generally, the photoluminescence intensity of the internal defective area is stronger than the well-deposited area, which is because of the high internal reflectivity of light signal caused by the sub-surface in the delamination area. But it should be noticed that coating’s surface morphology, such as porosity, roughness and thickness change could significantly affect the photoluminescent NDT result.Les revĂȘtements de barriĂšre thermique (BT) Ă©laborĂ©s par APS sont couramment utilisĂ©s aujourd'hui dans le domaine des moteurs aĂ©ronautiques civils, en particulier sur les composants chauds des turbomachines tels que la chambre de combustion et les aubes de turbine. De nos jours, des moyens de diagnostic non intrusifs sont nĂ©cessaires pour surveiller et prĂ©dire la durĂ©e de vie des BT. Le dopage des BT avec des terres rares est une approche prometteuse pour atteindre cet objectif.Dans ce travail, CoCrAlY a Ă©tĂ© sĂ©lectionnĂ© comme bond coat, et les poudres YSZ vs YSZ:Eu (2mol% Eu3+ dopĂ©) ont Ă©tĂ© choisies pour top coat. Trois BT avec diffĂ©rentes structures de dopage ont Ă©tĂ© prĂ©parĂ©es avec succĂšs sur des substrats Hastelloy-X par APS. L'Ă©tude a comparĂ© les changements de performance (tĂ©nacitĂ© apparente Ă  la fracture interfaciale, morphologie TGO et mĂ©canisme de rupture) des trois types d'Ă©chantillons, Ă  savoir Type A (YSZ:Eu3+), Type B (YSZ:Eu3+ + YSZ) et Type C (YSZ), sous oxydation isotherme, choc thermique et oxydation cyclique. Dans le mĂȘme temps, les propriĂ©tĂ©s de photoluminescence des Ă©chantillons ont Ă©tĂ© mesurĂ©es.(1) Le dopage Eu3+ Ă  2mol% n'a pratiquement aucun effet sur la densitĂ© et les propriĂ©tĂ©s mĂ©caniques intrinsĂšques de la BT. Comme prĂ©vu, le dopage des ions Eu3+ rĂ©duit efficacement la conductivitĂ© thermique de la BT.(2) L'influence d'une faible quantitĂ© de dopage Eu3+ sur la microstructure et les propriĂ©tĂ©s mĂ©caniques des YSZ BT sous traitement d'oxydation isotherme peut ĂȘtre nĂ©gligĂ©e. AprĂšs avoir subi le mĂȘme traitement d'oxydation isotherme, aucune inter-diffusion ne se produit entre les diffĂ©rentes couches, la tĂ©nacitĂ© interfaciale apparente et l'Ă©paisseur de TGO des Types A et C sont approximativement les mĂȘmes, et la dĂ©faillance de BT se produit principalement au niveau de l’interface entre TGO / top coat.(3) Le dopage de Eu3+ inhibe dans une certaine mesure la croissance et l'Ă©volution de TGO pendant les essais de choc thermique et d’oxydation cyclique, ce qui a lĂ©gĂšrement amĂ©liorĂ© les propriĂ©tĂ©s mĂ©caniques du BT. Le mode de dĂ©faillance du revĂȘtement aprĂšs traitement thermique cyclique est la dĂ©faillance interne Ă  la top coat.(4) La BT de Type A est plus adaptĂ©e aux revĂȘtements pour applications capteurs. L'intensitĂ© de photoluminescence dĂ©tectĂ©e par Type B est nettement infĂ©rieure Ă  celle de Type A, car dans le Type B, les ions Eu3+ ne sont incorporĂ©s que dans la moitiĂ© du revĂȘtement Ă  proximitĂ© de la bond coat et son signal lumineux est par consĂ©quent partiellement absorbĂ© / diffusĂ© par la moitiĂ© supĂ©rieure de YSZ pur.(5) Il est possible d'utiliser Eu3+ comme Ă©lĂ©ment marqueur de l'histoire thermique des YSZ BT pour la dĂ©tection de l'histoire thermique in-situ. L'intensitĂ© lumineuse de Type A et B aprĂšs traitement thermique diminue avec l'augmentation du temps d'oxydation isotherme (100 Ă  800 h) en raison de la pollution de surface du Cr2O3 et du CoO diffusant Ă  partir de la bond coat aprĂšs un traitement Ă  haute tempĂ©rature de longue durĂ©e. Cela rĂ©duit l’intensitĂ© lumineuse de la BT en raison de la re-modification de la propriĂ©tĂ© optique du revĂȘtement. ParallĂšlement, l'augmentation de la porositĂ© a Ă©galement un rĂŽle nĂ©gatif pour diminuer la transmission lumineuse de la BT. A l’inverse, pour augmenter le nombre de chocs thermiques et de cycle d'oxydation, le temps de chauffage court favorise le comportement de transition de l'Ă©tat amorphe Ă  l'Ă©tat cristallin, tout en amĂ©liorant le niveau de cristallinitĂ© et la croissance des cristallites Ă  l'intĂ©rieur du revĂȘtement, augmentant ainsi l'intensitĂ© de photoluminescence.(6) Les diffĂ©rences entre zone fissurĂ©e et zone non fissurĂ©e pourraient ĂȘtre dĂ©tectĂ©es en utilisant la voie de photoluminescence. En gĂ©nĂ©ral, l'intensitĂ© de photoluminescence de la zone dĂ©fectueuse interne est plus forte que la zone intacte, ce qui est dĂ» Ă  la rĂ©flectivitĂ© interne Ă©levĂ©e du signal lumineux provoquĂ©e par la zone de dĂ©lamination

    Research on crack propagation behaviour of EB-PVD TBCs based on TGO evolution

    No full text
    Abstract Thermal Barrier Coatings (TBCs) are functional coatings used to protect high-temperature components that are prone to early damage and premature failure under the influence of complex working conditions. This paper examines the crack propagation behaviour of 8% yttria-stabilized zirconia (8YSZ) EB-PVD TBCs under different oxidation conditions at 1100 °C. The morphology of interfacial cracks after oxidation was summarized and the evolution of thermally grown oxide (TGO) was quantified. Based on the evolution of TGO, the causes of crack propagation were analyzed. For the specimens after oxidation experiment, the interfacial crack propagation behaviour was observed and analyzed by SEM, and the reason of lateral crack propagation was explained from the perspective of interfacial fracture toughness. The reason for crack deflection is analyzed from the perspective of energy release rate. The equivalent thickness, normalized rumpling index and two-dimensional roughness index were calculated, then the TGO growth behaviour was comprehensively analyzed and related to the crack propagation

    Influence of isothermal aging conditions on APS TBC's interfacial fracture toughness

    No full text
    International audienceInterfacial toughness is an important factor to address thermal barrier coating's (TBC) durability. In this paper, a promising method, based on interfacial indentation, is used to analyze apparent interfacial toughness of TBC deposited by Atmospheric Plasma Spray (APS). The specimens made by APS were treated using different oxidation holding times and temperatures, namely 1050 C‐circle‐100 h, 1100 C‐circle‐100 h, 1050 C‐circle‐300 h and 1100 C‐circle‐300 h, respectively. The morphology of the interface between the TBC and the underlying bond coat was analyzed by Scanning Electron Microscopy (SEM). Results have shown that the fracture toughness of the interface between the bond coat and the top coat decreased as the oxidation conditions become more severe that is the temperature and/or to a lesser extent the exposure time is increased. Simultaneously, the thickness of the thermally grown oxide (TGO) generated on top of the aluminum reservoir bond coat increases as well. The TGO is a ``double layer'' oxide successively composed of a first scale of Al2O3 close to the bond coat and a second scale of CoCrNiO close to top coat. In addition, it was also found that the possible thermally activated spallation ofAPS TBC's system occurs in the zone of the TGO layer, especially within the CoCrNiO oxide scale. Consequently damage of APS systems is shown to initiate at the interface through complex mechanism of delamination in relation with both the toughness and the microstructure of the interface. In order to inhibit the growth of the detrimental CoCrNiO oxide and in turn favors the development of a dense and stable alumina scale, a Supersonic Fine Particles Bombarding (SFPB) method was used to optimize the quality of APS coating

    Stable isotope (delta C-13(ker), delta C-13(carb), delta O-18(carb)) distribution along a Cambrian outcrop section in the eastern Tarim Basin, NW China and its geochemical significance

    No full text
    This study investigated the geochemical features of the lower Paleozoic strata of Yaerdang Mountain outcrop along with the core samples from well TD2∈ in the eastern Tarim Basin, NW China. The total organic carbon abundance, hydrocarbon-generating precursor biospecies, and stable isotope ratios of organics and carbonate (ή13Cker, ή13Ccarb and ή18Ocarb) were comprehensively studied for their possible correlative constraints during sedimentary evolution. The results revealed that the ή13Cker (VPDB) of Cambrian kerogens along the outcrop section varied from −34.6‰ to −28.4‰, indicating an increasing tendency from the lower Cambrian to the upper Cambrian. This was on the whole accompanied by the variation in the ή13Ccarb and ή18Ocarb along the profile, which might be associated with the changes in the sea level and also in the compositional variation of benthic and planktonic biomass. The large variation in the stable carbon isotope ratios up to 6‰ along the outcrop section reflected the heterogeneity of the Cambrian source rocks from the eastern Tarim Basin. Hence, the 13C-enriched crude oils from well TD2∈ might have been derived from a localized stratum of Cambrian source rocks. The results from this study showed the possibility of multiple source kitchens in the Cambrian–lower Ordovician portion of Tarim Basin
    corecore