9 research outputs found

    A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    Get PDF
    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIbα. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspBBR), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspBBR structure revealed that it is comprised of three independently folded subdomains or modules: 1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; 2) a second Ig-fold resembling the binding region of mammalian Siglecs; 3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIbα. Further examination of purified GspBBR-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues

    Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding region of the Streptococcus gordonii adhesin GspB

    No full text
    The carbohydrate-binding region of GspB from S. gordonii strain M99 was crystallized in space group P212121 and data were collected to 1.3 Å resolution

    Inhibition of NADH oxidation by 1-methyl-4-phenylpyridinium analogs as the basis for the prediction of the inhibitory potency of novel compounds

    No full text
    Inhibition of NADH dehydrogenase (Complex I) of the mitochondrial respiratory chain by 1-methyl-4-phenylpyridinium (MPP+) and its analogs results in dopaminergic cell death. In the present study, the inhibition of mitochondrial respiration and of NADH oxidation in inverted inner membrane preparations by the oxidation products of N-methyl-stilbazoles (N-methyl-styrylpyridiniums) are characterized. These nonflexible MPP+ analogs were found to be considerably more potent inhibitors than the corresponding MPP+ derivatives. The IC50 values for these compounds and previously published figures for MPP+ analogs were then used to select a computer model based on structural parameters to predict the inhibitory potency of other compounds that react at the "rotenone site" in Complex I. A series of 12 novel inhibitors different in structure from the basic set were used to test the predictive capacity of the models selected. Despite major structural differences between the novel test compounds and the MPP+ and styrylpyridinium analogs on which the models were based, substantial agreement was found between the predicted and experimentally determined IC50 values. The value of this technique lies in the potential for the prediction of the inhibitory potency of other drugs and toxins which block mitochondrial respiration by interacting at the rotenone sites.</p
    corecore