8 research outputs found

    Experimental Measurements and Correlation of the Solubility of Three Primary Amides in Supercritical CO2: Acetanilide, Propanamide, and Butanamide

    Get PDF
    Solubilities of three primary amides, namely, acetanilide, propanamide, and butanamide, in supercritical carbon dioxide were measured at T = (308.2, 313.2, and 323.2) K over the pressure range (9.0 to 40.0) MPa by a flow type apparatus. The solubility behavior of the three solids shows an analogous trend with a crossover region of the respective isotherms between (12 to 14) MPa. The solubility of each amide, at the same temperature and pressure, decreases from propanamide to acetanilide. Pure compound properties required for the modeling were estimated, and the solubilities of the amides were correlated by using the Soave-Redlich-Kwong cubic equation of state with an absolute average relative deviation (AARD) from (1.3 to 6.1) %

    Semi-empirical models and a cubic equation of state for correlation of solids solubility in scCO(2): dyes and calix[4]arenes as illustrative exemples

    No full text
    Knowledge of a compound's solubility in the supercritical solvent is crucial to the definition of the optimal operating conditions and consequently to the development of supercritical applications. The present paper examines the performance of two of the most widely used groups of models for correlating the solubility of solid solutes in supercritical carbon dioxide – equations of state (EoSs) and semi-empirical density based models. The Soave-Kwong-Redlich (SRK) EoS with the one-fluid van der Waals mixing rule represents cubic EoSs, while the group of the density-based models includes Chrastil, Kumar and Johnston, Bartle et al., Méndez-Santiago and Teja, Garlapati and Madras, Nejad et al. and Khansary et al. models. The seven solutes chosen as illustrative examples are compounds of interest to the dry dyeing processing techniques and biotechnological processes and have diverse structural complexity. The results obtained reveal that the more recently advocated density-based models (Garlapati and Madras, Nejad et al. and Khansary et al. models) perform better with overall average absolute deviations, AARD, of 6.5, 9.0 and 9.3%, respectively. The 6.7% overall AARD for the SRK CEoS is acceptable and it can be used as a reliable thermodynamic model to predict the solubility of any compound for which there is no sufficient experimental data available.info:eu-repo/semantics/publishedVersio

    Green extracts of grape seed oil - potential source of fatty acids and health benefits

    No full text
    Supercritical CO2 extraction of oil from grape seed samples obtained from a Portuguese industry without any previous treatment was carried out at temperatures from (313 to 333) K, pressures up to 40.0 MPa and different scCO2 flow rates. The qualitative analysis of the crude oil was carried out by NMR. The fatty acids were analyzed by GC-FID with reference to the parameters in Annex I to European Commission Regulation. The results show similar content of triacylglycerols and diacylglycerols both in the n-hexane and scCO2 extracts, but the latter have higher content of polyunsaturated fatty acids and lower content of saturated fatty acids, and hence are more beneficial for human health and wellbeing.info:eu-repo/semantics/publishedVersio

    Assessment of Gnaphalium viscosum (Kunth) Valorization Prospects: Sustainable Recovery of Antioxidants by Different Techniques

    No full text
    This work investigates the prospects for exploitation of Gnaphalium viscosum (Kunth) abundant but with limited applications till present biomass. The feasibility of traditional techniques (two-phase solvent, and the benchmark Soxhlet extraction) and supercritical extraction without/with a cosolvent at T = 40–60 °C and p = 30–50 MPa was examined to explore the possibility of recovering phytochemicals from G. viscosum leaves, flowers and stems. The efficiency of the techniques was assessed and compared based on yield, influence of solvents used, total phenolic content and antioxidant activity of the extracts. Phenolics of different complexities were identified and quantified by applying LC (LC–MS/MS, and LC–HRAM), while the fatty acid profile was determined by GC–FID. The results of this extensive study demonstrated the huge valorization potential and prospects of G. viscosum, since highly potent antioxidants such as kaempferol, kaempferol-3-O-β-d-glucoside (astragalin), and chlorogenic acid were ascertained in considerable amounts. Furthermore, for the first time, the presence of leontopodic acid, a greatly substituted derivative of glucaric acid, was detected in the species

    Solubilities of C‑Tetraalkylcalix[4]resorcinarenes in SCCO2: experimental measurements, characterization, and correlation

    No full text
    The solubilities of two C-tetraalkylcalix[4]resorcinarenes, namely C-tetramethylcalix[4]resorcinarene and C-tetrapentylcalix[4]resorcinarene, in supercritical carbon dioxide (SCCO2) were measured in a flow-type apparatus at a temperature range from (313.2 to 333.2) K and at pressures from (12.0 to 35.0) MPa. The C-tetraalkylcalix[4]resorcinarenes were synthesized applying our optimized procedure and fully characterized by means of gel permeation chromatography, infrared and nuclear magnetic resonance spectroscopy. The solubilities of the C-tetraalkylcalix[4]resorcinarenes in SCCO2 were determined by analysis of the extracts obtained by HPLC with ultraviolet (UV) detection methodology adapted by our team. Four semiempirical density-based models, and the SoaveRedlichKwong cubic equation of state (SRK CEoS) with classical mixing rules, were applied to correlate the solubility of the calix[4]resorcinarenes in the SC CO2. The physical properties required for the modeling were estimated and reported
    corecore