2 research outputs found

    Synthesis and characterization of ZnBTC-based MOFs: effect of solvents and salt

    Get PDF
    In this work, we studied the optimization of synthetic approaches to creating structurally modified metal-organic frameworks under various synthesis conditions. We investigated the influence of the various solvents and zinc salts on the structural characteristics of the metal-organic framework based on benzene-1,3,5-tricarboxylic acid (H3BTC). The results indicate that the variation of the types of both solvent and salt is a parameter affecting the crystallinity, phase purity, and morphology of the metal-organic framework. This was confirmed by comprehensive structural characterization (SEM, EDX, PXRD)

    Tuning the Charge Transport in Nickel Salicylaldimine Polymers by the Ligand Structure

    No full text
    The conductivity of the polymeric energy storage materials is the key factor limiting their performance. Conductivity of polymeric NiSalen materials, a prospective class of energy storage materials, was found to depend strongly on the length of the bridge between the nitrogen atoms of the ligand. Polymers obtained from the complexes containing C3 alkyl and hydroxyalkyl bridges showed an electrical conductivity one order of magnitude lower than those derived from more common complexes with C2 alkyl bridges. The observed difference was studied by means of cyclic voltammetry on interdigitated electrodes and operando spectroelectrochemistry, combined with density functional theory (DFT) calculations
    corecore