41 research outputs found

    Syk-Mediated Translocation of PI3Kδ to the Leading Edge Controls Lamellipodium Formation and Migration of Leukocytes

    Get PDF
    The non-receptor tyrosine kinase Syk is mainly expressed in the hematopoietic system and plays an essential role in β2 integrin-mediated leukocyte activation. To elucidate the signaling pathway downstream of Syk during β2 integrin (CD11/CD18)-mediated migration and extravasation of polymorphonuclear neutrophils (PMN), we generated neutrophil-like differentiated HL-60 (dHL-60) cells expressing a fluorescently tagged Syk mutant lacking the tyrosine residue at the position 323 (Syk-Tyr323) that is known to be required for the binding of the regulatory subunit p85 of the phosphatidylinositol 3-kinase (PI3K) class IA. Syk-Tyr323 was found to be critical for the enrichment of the catalytic subunit p110δ of PI3K class IA as well as for the generation of PI3K products at the leading edge of the majority of polarized cells. In accordance, the translocation of PI3K p110δ to the leading edge was diminished in Syk deficient murine PMN. Moreover, the expression of EGFP-Syk Y323F interfered with proper cell polarization and it impaired efficient migration of dHL-60 cells. In agreement with a major role of β2 integrins in the recruitment of phagocytic cells to sites of lesion, mice with a Syk-deficient hematopoietic system demonstrated impaired PMN infiltration into the wounded tissue that was associated with prolonged cutaneous wound healing. These data imply a novel role of Syk via PI3K p110δ signaling for β2 integrin-mediated migration which is a prerequisite for efficient PMN recruitment in vivo

    Synthesis of Saturated Heterocycles via Metal-Catalyzed Formal Cycloaddition Reactions That Generate a C–N or C–O Bond

    Full text link

    Immature single-positive CD8+ thymocytes represent the transition from Notch-dependent to Notch-independent T-cell development

    No full text
    Early in T-cell development, cells proceed through stages that are critically dependent on signaling through the Notch receptor. As cells mature, thymocytes transition from being Notch dependent to being Notch independent, but the stage of development during which this transition occurs is unknown. We used an in vitro differentiation system in which thymocytes can be cultured in the presence or absence of a Notch ligand to identify the stage of development in which thymocytes transition from being Notch responsive to Notch non-responsive. We identified the immature single-positive (ISP) CD8+ stage of T-cell development as being this transition point. ISP thymocytes were responsive to Notch, but ISP cells responded to Notch ligation in a manner that was distinct from the response by double-negative (DN) thymocytes. Fewer ISP thymocytes proliferated and more ISP cells died in culture than DN thymocytes. Further, fewer double-positive (DP) thymocytes generated by culturing ISP thymocytes were in the S, G2 or M phase of the cell cycle as compared with DP thymocytes derived from DN thymocytes. These data indicate that the DP population created varied depending on the input population. In summary, the data presented here indicate that ISP thymocytes responded to Notch differently than DN thymocytes and ISP thymocytes represent the transition stage from Notch-dependent survival and proliferation to Notch-independent survival and proliferation
    corecore