289 research outputs found

    Robot-Assisted Full Automation Interface: Touch-Response On Zebrafish Larvae

    Get PDF

    Exploring the Factual Consistency in Dialogue Comprehension of Large Language Models

    Full text link
    LLMs (Large Language Models) usually interact with users in the form of dialogue and generate responses following their instructions, which naturally require dialogue comprehension abilities. However, dialogue comprehension is a general language ability which is hard to be evaluated directly. In this work, we propose to perform the evaluation focusing on the factual consistency issue with the help of the dialogue summarization task. Besides evaluating and analyzing the dialogue summarization performance (DIAC-Sum) of different LLMs, we also derive factual questions from the generated summaries and use them as a more flexible measurement of dialogue comprehension (DIAC-QA). Our evaluation shows that, on average, 26.8% of the summaries generated by LLMs contain factual inconsistency. Even ChatGPT, the strongest model evaluated, has such errors in 16% of its summaries. For answering the factual questions, which is more challenging, the average error rate of all evaluated LLMs is 36.1%. Both results indicate serious deficiencies. Detailed analysis shows that the understanding of subject/object of the conversation is still challenging for LLMs. Furthermore, to stimulate and enhance the dialogue comprehension ability of LLMs, we propose a fine-tuning paradigm with auto-constructed multi-task data, which achieved a relative error rate reduction of 11% on DIAC-QA.Comment: Accepted at NAACL2024 Mai

    Quantification Platform for Touch Response of Zebrafish Larvae using Machine Learning

    Get PDF
    A touch-evoked response of zebrafish larvae provides information of the mechanism of the gene functional expressions. Recently, an automated system has been developed for precise and repeated touch-response experimentation with minor human intervention. The data collected by the system are analyzed with regard to an automated quantification pipeline for scientific conclusions, including five quantification criteria: latency time, C-Bend curvature maximum, C-Bend peak time, response time, and moving distance. To quantify these criteria, we propose a larva tracking based automatic quantification pipeline by using a U-Net for initialization of tracking, a particle filter as tracking strategy, and region growing for the segmentation of larvae. Experimental data with different treatments are analyzed by using the proposed quantification platform for demonstration, and the result proves that this platform can generate comparable touch-response behavior quantification readouts in an efficient and automatic way. This platform provides an alternative to automatically screening the drugs for knowledge discovery according to the pattern of the touch-response behaviors of zebrafish larvae mutated by chemicals

    Healthcare provider-led interventions to support medication adherence following ACS:a meta-analysis

    Get PDF
    The efficiency with which the anaerobic fungi (phylum Neocallimastigomycota) degrade plant biomass is well-recognized and in recent years has received renewed interest. To further understand the biological mechanisms that are utilized by the rumen anaerobic fungi to break down lignocellulose, we have used a transcriptomic approach to examine carbohydrate digestion by Neocallimastix frontalis, Piromyces rhizinflata, Orpinomyces joyonii, and Anaeromyces mucronatus cultured on several carbon sources. The number of predicted unique transcripts ranged from 6,633 to 12,751. Pfam domains were identified in 62–70% of the fungal proteins and were linked to gene ontology terms to infer the biological function of the transcripts. Most of the predicted functions are consistent across species suggesting a similar overall strategy evolved for successful colonization of the rumen. However, the presence of differential profiles in enzyme classes suggests that there may be also be niche specialization. All fungal species were found to express an extensive array of transcripts encoding carbohydrate active enzymes (CAZymes) ranging from 8.3 to 11.3% of the transcriptome. CAZyme families involved in hemicellulose digestion were the most abundant across all four fungi. This study provides additional insight into how anaerobic fungi have evolved to become specialists at breaking down the plant cell wall in the complex and, strictly anaerobic rumen ecosystem

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    • …
    corecore