19 research outputs found

    Distribution and characterization of ampicillin- and tetracycline-resistant Escherichia coli from feedlot cattle fed subtherapeutic antimicrobials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feedlot cattle in North America are routinely fed subtherapeutic levels of antimicrobials to prevent disease and improve the efficiency of growth. This practice has been shown to promote antimicrobial resistance (AMR) in subpopulations of intestinal microflora including <it>Escherichia coli</it>. To date, studies of AMR in feedlot production settings have rarely employed selective isolation, therefore yielding too few AMR isolates to enable characterization of the emergence and nature of AMR in <it>E. coli </it>as an indicator bacterium. <it>E. coli </it>isolates (<it>n </it>= 531) were recovered from 140 cattle that were housed (10 animals/pen) in 14 pens and received no dietary antimicrobials (control - 5 pens, CON), or were intermittently administered subtherapeutic levels of chlortetracycline (5 pens-T), chlortetracycline + sulfamethazine (4 pens-TS), or virginiamycin (5 pens-V) for two separate periods over a 9-month feeding period. Phenotype and genotype of the isolates were determined by susceptibility testing and pulsed field gel electrophoresis and distribution of characterized isolates among housed cattle reported. It was hypothesized that the feeding of subtherapeutic antibiotics would increase the isolation of distinct genotypes of AMR <it>E. coli </it>from cattle.</p> <p>Results</p> <p>Overall, patterns of antimicrobial resistance expressed by <it>E. coli </it>isolates did not change among diet groups (CON vs. antibiotic treatments), however; isolates obtained on selective plates (i.e., M<sup>A</sup>,M<sup>T</sup>), exhibited multi-resistance to sulfamethoxazole and chloramphenicol more frequently when obtained from TS-fed steers than from other treatments. Antibiograms and PFGE patterns suggested that AMR <it>E. coli </it>were readily transferred among steers within pens. Most M<sup>T </sup>isolates possessed the <it>tet</it>(B) efflux gene (58.2, 53.5, 40.8, and 50.6% of isolates from CON, T, TS, and V steers, respectively) whereas among the M<sup>A </sup>(ampicillin-resistant) isolates, the <it>tem1</it>-like determinant was predominant (occurring in 50, 66.7, 80.3, and 100% of isolates from CON, T, TS, and V steers, respectively).</p> <p>Conclusions</p> <p>Factors other than, or in addition to subtherapeutic administration of antibiotics influence the establishment and transmission of AMR <it>E. coli </it>among feedlot cattle.</p

    Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen) were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control). Model fecal deposits (<it>n </it>= 3) were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of <it>tet</it>, <it>sul </it>and <it>erm </it>resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified <it>16S-rRNA.</it></p> <p>Results</p> <p>The concentrations of <it>16S-rRNA </it>in feces were similar across treatments and increased by day 56, declining thereafter. DGGE profiles of <it>16S-rRNA </it>differed amongst treatments and with time, illustrating temporal shifts in microbial communities. All measured resistance gene determinants were quantifiable in feces after 175 days. Antimicrobial treatment differentially affected the abundance of certain resistance genes but generally not their persistence. In the first 56 days, concentrations of <it>tet</it>(B), <it>tet</it>(C), <it>sul1, sul2</it>, <it>erm</it>(A) tended to increase, and decline thereafter, whereas <it>tet</it>(M) and <it>tet</it>(W) gradually declined over 175 days. At day 7, the concentration of <it>erm</it>(X) was greatest in feces from cattle fed tylosin, compared to all other treatments.</p> <p>Conclusion</p> <p>The abundance of genes coding for antimicrobial resistance in bovine feces can be affected by inclusion of antibiotics in the feed. Resistance genes can persist in feces from cattle beyond 175 days with concentrations of some genes increasing with time. Management practices that accelerate DNA degradation such as frequent land application or composting of manure may reduce the extent to which bovine feces serves as a reservoir of antimicrobial resistance.</p

    Effect of antimicrobial growth promoter administration on the intestinal microbiota of beef cattle

    Get PDF
    Sherpa Romeo green journal. Open access journal. Creative Commons Attribution 2.0 Generic License (CC BY 2.0) appliesBackground: Antimicrobial growth promoters (AGPs) are antimicrobial agents administered to livestock in feed for prolonged periods to enhance feed efficiency. Beef cattle are primarily finished in confined feeding operations in Canada and the USA, and the administration of AGPs such as chlortetracycline and sulfamethazine (Aureo S-700 G) is the standard. The impacts of AGPs on the intestinal microbiota of beef cattle are currently uncertain; it is documented that AGPs administered to beef cattle pass through the rumen and enter the intestine. To ascertain the impacts of Aureo S-700 G on the small and large intestinal microbiota of beef cattle (mucosa-associated and within digesta), terminal restriction fragment length polymorphism (T-RFLP) analysis and quantitative PCR (qPCR) for total bacteria were applied. Beef cattle were maintained in an experimental feedlot (five replicate pens per treatment), and AGP treatment cattle were administered Aureo S-700 G in feed, whereas control cattle were administered no antimicrobials. As the intestinal microbiota of beef cattle has not been extensively examined, clone library analysis was applied to ascertain the primary bacterial constituents of the intestinal microbiota. Results: Comparative T-RFLP and qPCR analysis (n = 122 samples) revealed that bacterial community fingerprints and bacterial load within digesta differed from those associated with mucosa. However, the administration of Aureo S-700 G did not affect bacterial community fingerprints or bacterial load within the small and large intestine relative to control cattle. Analysis of >1500 near full length 16S rDNA clones revealed considerably greater bacterial diversity in the large relative to the small intestine of beef cattle. Mucosa-associated bacterial communities in the jejunum were dominated by Proteobacteria, and differed conspicuously from those in the ileum and large intestine. Although the ileum contained bacterial clones that were common to the jejunum as well as the cecum, Firmicutes clones associated with mucosa dominated in the ileum, cecum, and descending colon. In the descending colon, clone library analysis did not reveal a difference in the richness or diversity of bacterial communities within digesta relative to those associated with mucosa. However, T-RFLP analysis indicated a significant difference in T-RF relative abundance (i.e. difference in relative taxon abundance) between mucosa-associated and digesta communities attributed in part to the differential abundance of Bacteriodes, Alistipes, Oscillibacter, and unclassified Clostridiales. Conclusions: These data demonstrate that there was no significant difference in the composition of the predominant intestinal bacteria constituents within animals administered Aureo S-700 G and those not administered AGPs after a 28 day withdrawal period.Ye

    Healthcare provider-led interventions to support medication adherence following ACS:a meta-analysis

    Get PDF
    The efficiency with which the anaerobic fungi (phylum Neocallimastigomycota) degrade plant biomass is well-recognized and in recent years has received renewed interest. To further understand the biological mechanisms that are utilized by the rumen anaerobic fungi to break down lignocellulose, we have used a transcriptomic approach to examine carbohydrate digestion by Neocallimastix frontalis, Piromyces rhizinflata, Orpinomyces joyonii, and Anaeromyces mucronatus cultured on several carbon sources. The number of predicted unique transcripts ranged from 6,633 to 12,751. Pfam domains were identified in 62–70% of the fungal proteins and were linked to gene ontology terms to infer the biological function of the transcripts. Most of the predicted functions are consistent across species suggesting a similar overall strategy evolved for successful colonization of the rumen. However, the presence of differential profiles in enzyme classes suggests that there may be also be niche specialization. All fungal species were found to express an extensive array of transcripts encoding carbohydrate active enzymes (CAZymes) ranging from 8.3 to 11.3% of the transcriptome. CAZyme families involved in hemicellulose digestion were the most abundant across all four fungi. This study provides additional insight into how anaerobic fungi have evolved to become specialists at breaking down the plant cell wall in the complex and, strictly anaerobic rumen ecosystem

    Anaerobic bacteria isolated from the alimentary canals of alfalfa leafcutting bee larvae

    No full text
    Microorganisms were isolated from the alimentary canals of third-instar alfalfa leafcutting bee (Megachile rotundata) larvae under strict anaerobic conditions. In all 3 years of the study, small populations (8.0 colony-forming units per gut) of a limited number of bacterial taxa (primarily the facultatively anaerobic bacteria Paenibacillus macerans, Bacillus licheniformis, B. brevis, B. mycoides and P. polymyxa) were isolated. With the exception of three isolates of Clostridium longisporum recovered in 1993, no obligate anaerobic bacteria were isolated. The small size of populations and the inconsistency of recovery of bacteria in different years suggest that anaerobic microorganisms are not common inhabitants of leafcutting bee larval guts. Consequently they could not have a significant impact on the ecology of the alimentary canal nor influence the development of chalkbrood disease caused by the entompathogenic fungus, Ascosphaera aggregata. © Inra/DIB/AGIB/Elsevier, Pari

    Diversity and Distribution of Commensal Fecal Escherichia coli Bacteria in Beef Cattle Administered Selected Subtherapeutic Antimicrobials in a Feedlot Setting▿ †

    No full text
    Escherichia coli strains isolated from fecal samples were screened to examine changes in phenotypic and genotypic characteristics including antimicrobial susceptibility, clonal type, and carriage of resistance determinants. The goal of this 197-day study was to investigate the influence of administration of chlortetracycline alone (T) or in combination with sulfamethazine (TS) on the development of resistance, dissemination of defined strain types, and prevalence of resistance determinants in feedlot cattle. Inherent tetracycline resistance was detected in cattle with no prior antimicrobial exposure. Antimicrobial administration was not found to be essential for the maintenance of inherently ampicillin-resistant and tetracycline-resistant (Tetr) E. coli in control animals; however, higher Tetr E. coli shedding was observed in animals subjected to the two treatments. At day 0, high tetracycline (26.7%), lower sulfamethoxazole-tetracycline (19.2%), and several other resistances were detected, which by the finishing phase (day 197) were restricted to ampicillin-tetracycline (47.5%), tetracycline (31.7%), and ampicillin-tetracycline-sulfamethoxazole (20.8%) from both treated and untreated cattle. Among the determinants, blaTEM1, tet(A), and sul2 were prevalent at days 0 and 197. Further, E. coli from day 0 showed diverse antibiogram profiles and strain types, which by the finishing phase were limited to up to three, irrespective of the treatment. Some genetically identical strains expressed different phenotypes and harbored diverse determinants, indicating that mobile genetic elements contribute to resistance dissemination. This was supported by an increased linked inheritance of ampicillin and tetracycline resistance genes and prevalence of specific strains at day 197. Animals in the cohort shed increasingly similar genotypes by the finishing phase due to animal-to-animal strain transmission. Thus, characterizing inherent resistance and propagation of cohort-specific strains is crucial for determining antimicrobial resistance in cattle

    Application of Transcriptomics to Compare the Carbohydrate Active Enzymes That Are Expressed by Diverse Genera of Anaerobic Fungi to Degrade Plant Cell Wall Carbohydrates

    Get PDF
    The efficiency with which the anaerobic fungi (phylum Neocallimastigomycota) degrade plant biomass is well-recognized and in recent years has received renewed interest. To further understand the biological mechanisms that are utilized by the rumen anaerobic fungi to break down lignocellulose, we have used a transcriptomic approach to examine carbohydrate digestion by Neocallimastix frontalis, Piromyces rhizinflata, Orpinomyces joyonii, and Anaeromyces mucronatus cultured on several carbon sources. The number of predicted unique transcripts ranged from 6,633 to 12,751. Pfam domains were identified in 62–70% of the fungal proteins and were linked to gene ontology terms to infer the biological function of the transcripts. Most of the predicted functions are consistent across species suggesting a similar overall strategy evolved for successful colonization of the rumen. However, the presence of differential profiles in enzyme classes suggests that there may be also be niche specialization. All fungal species were found to express an extensive array of transcripts encoding carbohydrate active enzymes (CAZymes) ranging from 8.3 to 11.3% of the transcriptome. CAZyme families involved in hemicellulose digestion were the most abundant across all four fungi. This study provides additional insight into how anaerobic fungi have evolved to become specialists at breaking down the plant cell wall in the complex and, strictly anaerobic rumen ecosystem

    Data_Sheet_3_Application of Transcriptomics to Compare the Carbohydrate Active Enzymes That Are Expressed by Diverse Genera of Anaerobic Fungi to Degrade Plant Cell Wall Carbohydrates.XLSX

    No full text
    <p>The efficiency with which the anaerobic fungi (phylum Neocallimastigomycota) degrade plant biomass is well-recognized and in recent years has received renewed interest. To further understand the biological mechanisms that are utilized by the rumen anaerobic fungi to break down lignocellulose, we have used a transcriptomic approach to examine carbohydrate digestion by Neocallimastix frontalis, Piromyces rhizinflata, Orpinomyces joyonii, and Anaeromyces mucronatus cultured on several carbon sources. The number of predicted unique transcripts ranged from 6,633 to 12,751. Pfam domains were identified in 62–70% of the fungal proteins and were linked to gene ontology terms to infer the biological function of the transcripts. Most of the predicted functions are consistent across species suggesting a similar overall strategy evolved for successful colonization of the rumen. However, the presence of differential profiles in enzyme classes suggests that there may be also be niche specialization. All fungal species were found to express an extensive array of transcripts encoding carbohydrate active enzymes (CAZymes) ranging from 8.3 to 11.3% of the transcriptome. CAZyme families involved in hemicellulose digestion were the most abundant across all four fungi. This study provides additional insight into how anaerobic fungi have evolved to become specialists at breaking down the plant cell wall in the complex and, strictly anaerobic rumen ecosystem.</p
    corecore