407 research outputs found

    Dynamic 3D shape measurement based on the phase-shifting moir\'e algorithm

    Full text link
    In order to increase the efficiency of phase retrieval,Wang proposed a high-speed moire phase retrieval method.But it is used only to measure the tiny object. In view of the limitation of Wang method,we proposed a dynamic three-dimensional (3D) measurement based on the phase-shifting moire algorithm.First, four sinusoidal fringe patterns with a pi/2 phase-shift are projected on the reference plane and acquired four deformed fringe patterns of the reference plane in advance. Then only single-shot deformed fringe pattern of the tested object is captured in measurement process.Four moire fringe patterns can be obtained by numerical multiplication between the the AC component of the object pattern and the AC components of the reference patterns respectively. The four low-frequency components corresponding to the moire fringe patterns are calculated by the complex encoding FT (Fourier transform) ,spectrum filtering and inverse FT.Thus the wrapped phase of the object can be determined in the tangent form from the four phase-shifting moire fringe patterns using the four-step phase shifting algorithm.The continuous phase distribution can be obtained by the conventional unwrapping algorithm. Finally, experiments were conducted to prove the validity and feasibility of the proposed method. The results are analyzed and compared with those of Wang method, demonstrating that our method not only can expand the measurement scope, but also can improve accuracy.Comment: 14 pages,5 figures. ams.or

    Improved method for phase wraps reduction in profilometry

    Full text link
    In order to completely eliminate, or greatly reduce the number of phase wraps in 2D wrapped phase map, Gdeisat et al. proposed an algorithm, which uses shifting the spectrum towards the origin. But the spectrum can be shifted only by an integer number, meaning that the phase wraps reduction is often not optimal. In addition, Gdeisat's method will take much time to make the Fourier transform, inverse Fourier transform, select and shift the spectral components. In view of the above problems, we proposed an improved method for phase wraps elimination or reduction. First, the wrapped phase map is padded with zeros, the carrier frequency of the projected fringe is determined by high resolution, which can be used as the moving distance of the spectrum. And then realize frequency shift in spatial domain. So it not only can enable the spectrum to be shifted by a rational number when the carrier frequency is not an integer number, but also reduce the execution time. Finally, the experimental results demonstrated that the proposed method is feasible.Comment: 16 pages, 15 figures, 1 table. arXiv admin note: text overlap with arXiv:1604.0723

    One shot profilometry using iterative two-step temporal phase-unwrapping

    Full text link
    This paper reviews two techniques that have been recently published for 3D profilometry and proposes one shot profilometry using iterative two-step temporal phase-unwrapping by combining the composite fringe projection and the iterative two-step temporal phase unwrapping algorithm. In temporal phase unwrapping, many images with different frequency fringe pattern are needed to project which would take much time. In order to solve this problem, Ochoa proposed a phase unwrapping algorithm based on phase partitions using a composite fringe, which only needs projecting one composite fringe pattern with four kinds of frequency information to complete the process of 3D profilometry. However, we found that the fringe order determined through the construction of phase partitions tended to be imprecise. Recently, we proposed an iterative two-step temporal phase unwrapping algorithm, which can achieve high sensitivity and high precision shape measurement. But it needs multiple frames of fringe images which would take much time. In order to take into account both the speed and accuracy of 3D shape measurement, we get a new, and more accurate unwrapping method based on composite fringe pattern by combining these two techniques. This method not only retains the speed advantage of Ochoa's algorithm, but also greatly improves its measurement accuracy. Finally, the experimental evaluation is conducted to prove the validity of the proposed method, and the experimental results show that this method is feasible.Comment: 14 pages, 15 figure

    Pressure measurement based on multi-waves fusion algorithm

    Get PDF
    Measuring the pressure of a pressure vessel accurately is one of fundamental requirements of the operation of many complex engineering systems. Ultrasonic technique has been proposed to be a good alteration of non-intrusive measurement. Based on the study of acoustoelastic effect and thin-shell theory, it has been identified that the travel-time changes of the critically refracted longitudinal wave (LCR wave) and other reflected longitudinal waves are all proportional to the inner pressure. Considering the information redundancy in these waves, we proposed an approach for pressure measurement by using the information fusion algorithm on multiple reflected longitudinal waves. In the paper, we discussed the fusion algorithm in details and proposed a pressure measurement model, which represents an accurate relationship between the pressure and the travel-time changes of multiple waves. Through the experiment, the analysis of data collected from experiment system showed that the pressure measurement based on the multi-wave model is notably more accurate than the one based on the single-wave model (the average relative error (ARE) can be less than 7.24% and the root-mean-square error (RMSE) can be lower than 0.3MPa)
    corecore