4 research outputs found

    Regimes of stability of accelerator modes

    Full text link
    The phase diagram of a simple area-preserving map, which was motivated by the quantum dynamics of cold atoms, is explored analytically and numerically. Periodic orbits of a given winding ratio are found to exist within wedge-shaped regions in the phase diagrams, which are analogous to the Arnol'd tongues which have been extensively studied for a variety of dynamical systems, mostly dissipative ones. A rich variety of bifurcations of various types are observed, as well as period doubling cascades. Stability of periodic orbits is analyzed in detail.Comment: Submitted to Physica

    Scaling and Universality of the Complexity of Analog Computation

    Full text link
    We apply a probabilistic approach to study the computational complexity of analog computers which solve linear programming problems. We analyze numerically various ensembles of linear programming problems and obtain, for each of these ensembles, the probability distribution functions of certain quantities which measure the computational complexity, known as the convergence rate, the barrier and the computation time. We find that in the limit of very large problems these probability distributions are universal scaling functions. In other words, the probability distribution function for each of these three quantities becomes, in the limit of large problem size, a function of a single scaling variable, which is a certain composition of the quantity in question and the size of the system. Moreover, various ensembles studied seem to lead essentially to the same scaling functions, which depend only on the variance of the ensemble. These results extend analytical and numerical results obtained recently for the Gaussian ensemble, and support the conjecture that these scaling functions are universal.Comment: 22 pages, latex, 12 eps fig
    corecore