113 research outputs found

    Radiation-induced damage and evolution of defects in Mo

    Get PDF
    The formation of defects in bcc Mo lattice as a result of 50-keV Xe bombardment is studied via atomistic simulation with an interatomic potential developed using the force-matching ab initio based approach. The defect evolution in the cascade is described. Diffusion and interaction of interstitials and vacancies are analyzed. Only small interstitial atom clusters form directly in the cascade. Larger clusters grow only via aggregation at temperatures up to 2000 K. Stable forms of clusters demonstrate one-dimensional diffusion with a very high diffusion coefficient and escape quickly to the open surface. Point vacancies have much lower diffusivity and do not aggregate. The possibility of a large prismatic vacancy loop formation near the impact surface as a result of fast recrystallization is revealed. The mobility of the vacancy dislocation loop segments is high, however, the motion of the entire loops is strongly hindered by neighbor point defects. This paper explains the existence of the large prismatic vacancy loops and the absence of the interstitial loops in the recent experiments with ion irradiation of Mo foils

    Electron transfer and subsequent reactions during electrochemical oxidation of aryl- and alkylthio derivatives of mucochloric acid

    Get PDF
    The electrochemical oxidation of aryl- and alkylthio derivatives of mucochloric acid (3,4-dichloro-5-hydroxyfuran-2(5H)-one) in MeCN-Bu 4NBF4 (0.1 mol L-1) was investigated. It was shown that all sulfides are electrochemically active, from one to five oxidation steps of sulfur-containing groups were observed for them. The ease and direction of oxidation of the thio group depend on its nature and position in the furanone ring. 3-Substituted 2(5H)-furanones possess the lowest oxidation potential. 4-Substituted 2(5H)-furanones are predominantly oxidized to sulfoxides, 5-aryl- and -alkylthio derivatives undergo fragmentation to give mucochloric acid, and 3-arylthio derivative gives complex unidentified mixture of products. In the case of 3,4-bis(4-methylphenylthio) derivative, the oxidation product of the arylthio group at the 3 position to the corresponding sulfoxide was isolated. Based on the data from cyclic voltammetry with different concentrations of a substrate and water added, the results of preparative electrolysis and quantum chemical calculations, possible mechanisms of electrochemical oxidation of mucochloric acid-derived sulfides are discussed. The initial common step is a reversible single-electron transfer from the substrate molecule to form highly reactive radical cation. © 2009 Springer Science+Business Media, Inc

    Methylviologen mediated electrosynthesis of palladium nanoparticles stabilized with CTAC

    Get PDF
    © 2016 The Electrochemical Society. All rights reserved.Efficient electrosynthesis of ultrasmall palladium nanoparticles stabilized with CTA+ cetyltrimethylammonium cations (Pd@CTA+) was carried out in an aqueous medium by methylviologen mediated electroreduction of poorly soluble aggregates ([PdCl4]2·2CTA+)n of [PdCl4]2- anionic complex with CTA+ cations on a glassy carbon electrode at potentials of theMV2+/MV·+ redox couple. ([PdCl4]2- ·2CTA+)n aggregates are reduced directly on the electrode at a low rate and the generated metal is deposited on the electrode. In the case of mediated reduction, the metal is not deposited on the cathode, and after passing of Q = 2 F quantitative conversion from [PdCl4]2- to Pd@CTA+ nanoparticles occurs in the solution bulk. These particles are positively charged (zeta-potential is 66.8 mV) and their hydrodynamic diameter is 18 nm. Separated Pd@CTAC nanoparticles are combined into larger aggregates due to coalescence of the organic shell. The predominant shape of metal nanoparticles is an imperfect sphere with a diameter of 5 ± 3 nm, and the average size of the metal crystallites is 4.66 nm

    Electrochemical reduction of mucochloric acid and its 5-alkoxy derivatives

    Get PDF
    5-Alkoxy-3-chloro-2(5H)-furanones were synthesized by the electrochemical reduction of 5-alkoxy derivatives of mucochloric acid in acetonitrile on the lead electrode in the presence of acetic acid as a proton donor. A combined analysis of the experimental data and quantum chemical calculation of intermediates indicates the EE D C mechanism of reduction, including the tandem transfer of two electrons with chloride ion elimination at the stage of transfer of the second electron and protonation. © 2012 Springer Science+Business Media New York

    Methylviologen-mediated electrochemical synthesis of silver nanoparticles via the reduction of AgCl nanospheres stabilized by cetyltrimethylammonium chloride

    Get PDF
    © 2017, Pleiades Publishing, Ltd.Efficient synthesis of silver nanoparticles stabilized by cetyltrimethylammonium cations (Ag@CTA+) is carried out in aqueous medium by methylviologen-mediated electroreduction of silver chloride nanospheres stabilized by surface-active CTA+ cations (AgCl@CTA+, diameter ~330 nm), on a glassy carbon electrode at potentials of the MV2+/MV•+ redox couple. The nanospheres AgCl@CTA+ can be reduced immediately on the electrode at a low rate and the resulting metal is deposited on the electrode. In the mediated reduction, the metal is not deposited on the cathode but the quantitative reduction of AgCl to Ag@CTA+ nanoparticles proceeds completely in solution volume at the theoretical charge. In aqueous solution, the nanoparticles are positively charged (electrokinetic (zeta) potential is +74.6 mV), their characteristic absorption maximum is at 423 nm and the average hydrodynamic diameter is 77 nm. Isolated Ag@CTACl nanoparticles have the size of 39 ± 15 nm. The preferential form of metal nanoparticles is sphere with the diameter of 34 ± 24 nm; nanorods are also obtained in small amounts (4%); the average size of metal grains is 8–16 nm

    Fullerene mediated electrosynthesis of Au/C<inf>60</inf>nanocomposite

    Get PDF
    © 2017 The Electrochemical Society. All rights reserved. C 60 fullerene mediated electroreduction of Au(I) at potentials of the C 60 /C 60 •− redox couple was used to perform the electrosynthesis of an AuNP/C 60 nanocomposite in DCB-DMF (2:1)/0.1 M Bu 4 NCl medium. The nanocomposite consists of separate gold nanoparticles with various shapes and a mean size of ~27 ± 14 nm, as well as larger nanoaggregates of such particles, isolated in a fullerene matrix. The mean size of metal crystallites is 9–14 nm. The electrolysis occurs efficiently, and Au(I) is quantitatively reduced to Au(0) upon consumption of the theoretical amount of electricity. The resulting metal nanoparticles and the nanocomposite are not deposited on the electrode and are completely stabilized in the solution bulk. All the particles were characterized by electron microscopy methods (SEM, HR TEM) and X-ray powder diffraction (XRPD)

    Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC

    Get PDF
    © 2018 Elsevier Ltd Efficient electrosynthesis of the monodisperse ultrasmall spherical mono- and bimetallic nanoparticles (NP) of Ag and Pd stabilized in the CTAC shell in solution bulk was carried out by methylviologen mediated reduction of equimolar amounts of Pd(II) and Ag(I) (1.5 mM) in the presence of CTAC (75 mM) at controlled potentials of the MV2+/MV•+ redox couple in water/0.1 M NaCl medium at room temperature. Metal ions are quantitatively converted to NP upon consumption of the theoretical amount of electricity. Sizes of isolated PdNP and AgNP are 5 ± 1 nm and 18 ± 5 nm, respectively. Bimetallic PdAgNP were obtained in three ways: (i) by preliminary synthesis of PdNP and subsequent reduction of AgCl (Pd/AgNP); (ii) by preliminary synthesis of AgNP and subsequent reduction of PdCl2 (Ag/PdNP); (iii) by joint reduction of PdCl2 and AgCl (Ag-PdNP). In all cases, a solid-solution alloy PdAgNP is obtained. The driving force for the alloy formation is the energy gain of ∼33 kJ/mol of an alloy. In the first way, the NP size (8 ± 2 nm) and the Pd content in the alloy (76%) are slightly higher than in the other two methods (6 ± 1 nm, 50 and 68%), but the alloy crystallite size (2–5 nm) in NP is the same. PdNP and alloys NP exhibit a high catalytic activity toward the p-nitrophenol reduction and the Suzuki-Miyaura cross-coupling reactions. In the reduction reaction, an addition of silver to palladium decreases the catalytic activity of NP. The catalytic activity of alloys in the coupling reaction correlates with the Pd content in an alloy. And the catalytic activity of the alloy Pd/AgNP obtained in the first method of the NP preparation is higher than that of PdNP

    Heterometallic complex formation on p-sulfonatothiacalix[4]arene platform resulting in pH- and redox-modification of [Ru(bpy)3]2+ luminescence

    Get PDF
    The pH-dependent heterometallic complex formation with p-sulfonatothiacalix[4]arene (TCAS) as bridging ligand in aqueous solutions was revealed by the use of spectrophotometry, nuclear magnetic relaxation and fluorimetry methods. The novelty of the structural motif presented is that the appendance of emission metal center ([Ru(bpy)3]2+) is achieved through the cooperative non-covalent interactions with the upper rim of TCAS. The second metal block (Fe(III), Fe(II) and Mn(II)), bound with the lower rim of TCAS in the inner sphere coordination mode is serving as quencher of [Ru(bpy)3]2+ emission. The difference between the complex ability of Fe(III) and Fe(II) ions provides pH conditions for redox-dependent emission of [Ru(bpy)3]2+. © 2009 Elsevier B.V. All rights reserved
    corecore