242 research outputs found

    Clinical non-penetrance associated with biallelic mutations in the RNase H2 complex

    Get PDF

    NOTCH1-related leukoencephalopathy: a novel variant and literature  review

    Get PDF
    Background: NOTCH1-related leukoencephalopathy is a new diagnostic entity linked to heterozygous gain-of-function variants in NOTCH1 that neuroradiologically shows some overlap with the inflammatory microangiopathy Aicardi-Goutières syndrome (AGS). Aim: To report a 16-year-old boy harbouring a novel NOTCH1 mutation who presented neuroradiological features suggestive of enhanced type I interferon signalling. We describe 5-years of follow-up and review the current literature on NOTCH1-related leukoencephalopathy. Methods: Clinical evaluation, standardized scales (SPRS, SARA, CBCL, CDI-2:P, WISCH-IV and VABS-2) and neuroradiological studies were performed, as well as blood DNA analysis. For the literature review, a search was performed on Pubmed, Scopus and Web of Science, up to December 2023 using the following text word search strategy: (NOTCH1) AND (leukoencephalopathy). Results: Our patient presents clinical features consistent with other reported cases with NOTCH1 mutations but is among the minority of patients with an onset after infancy. During the 5-year follow-up, we observed an increase in the severity of spasticity and ataxia. However, at the age of 16 years, our proband is still ambulatory. As for other reported patients, he manifests psychiatric features, ranging from hyperactivity during childhood, to anxiety and depression during adolescence. The neuroradiological picture remained essentially stable over 5 years. In addition to the typical findings of leukoencephalopathy with cysts and calcifications already described, we report the presence of T2-hyperintensity and T1-hypotensity of the transverse pontine fibres, enhancement in the periventricular white matter after gadolinium administration, and decreased NAA and Cho peaks in the periventricular white matter on MRS. We identified a novel heterozygous variant in NOTCH1 (c.4788_4799dup), a frame insertion located in extracellular negative regulatory region (NRR)-domain as in previously published cases. Blood interferon signalling was not elevated compared to controls. Conclusions: This case provides further data on a new diagnostic entity i.e. NOTCH1-related leukoencephalopathy. By describing a standardized 5-year follow-up in one case, and reviewing the other patients described to date, we outline recommendations relating to monitoring in this illness, emphasizing the importance of psychiatric and gastroenterological surveillance alongside neurological and neuropsychological management. Studies are needed to better understand the factors influencing disease onset and severity, which are heterogeneous

    Global mapping of RNA homodimers in living cells

    Get PDF
    RNA homodimerization is important for various physiological processes, including the assembly of membraneless organelles, RNA subcellular localization, and packaging of viral genomes. However, understanding RNA dimerization has been hampered by the lack of systematic in vivo detection methods. Here, we show that CLASH, PARIS, and other RNA proximity ligation methods detect RNA homodimers transcriptome-wide as “overlapping” chimeric reads that contain more than one copy of the same sequence. Analyzing published proximity ligation data sets, we show that RNA:RNA homodimers mediated by direct base-pairing are rare across the human transcriptome, but highly enriched in specific transcripts, including U8 snoRNA, U2 snRNA, and a subset of tRNAs. Mutations in the homodimerization domain of U8 snoRNA impede dimerization in vitro and disrupt zebrafish development in vivo, suggesting an evolutionarily conserved role of this domain. Analysis of virus-infected cells reveals homodimerization of SARS-CoV-2 and Zika genomes, mediated by specific palindromic sequences located within protein-coding regions of N gene in SARS-CoV-2 and NS2A gene in Zika. We speculate that regions of viral genomes involved in homodimerization may constitute effective targets for antiviral therapies

    Case report: Clinical and neuroradiological longitudinal follow-up in Leukoencephalopathy with Calcifications and Cysts during treatment with bevacizumab

    Get PDF
    Leukoencephalopathy with Calcifications and Cysts (LCC) is a rare genetic microangiopathy exclusively affecting the central nervous system caused by biallelic mutations in SNORD118. Brain magnetic resonance imaging (MRI) is often diagnostic due to the highly characteristic triad of leukoencephalopathy, intracranial calcifications, and brain cysts. Age at onset, presentation and disease evolution can all vary, ranging from pauci-symptomatic disease to rapid evolution of signs with loss of motor and cognitive abilities. No specific therapies for LCC are currently licensed. According to the literature, bevacizumab might represent an effective modality to improve the clinical and MRI features of the disease. However, uncertainty remains as to the true efficacy of this approach, when to begin therapy, appropriate dosing, and the consequences of drug withdrawal. According to CARE guidelines, we describe the long-term clinical and neuro-radiological follow-up of a 10-year-old child with LCC. We report disease evolution following repeated cycles of treatment with bevacizumab. Our case report suggests that repeated cycles of bevacizumab might effectively modify disease progression, possibly indicating a time-dependent effect

    Phenotypes associated with genetic determinants of type I interferon regulation in the UK Biobank:a protocol

    Get PDF
    BACKGROUND: Type I interferons are cytokines involved in innate immunity against viruses. Genetic disorders of type I interferon regulation are associated with a range of autoimmune and cerebrovascular phenotypes. Carriers of pathogenic variants involved in genetic disorders of type I interferons are generally considered asymptomatic. Preliminary data suggests, however, that genetically determined dysregulation of type I interferon responses is associated with autoimmunity, and may also be relevant to sporadic cerebrovascular disease and dementia. We aim to determine whether functional variants in genes involved in type I interferon regulation and signalling are associated with the risk of autoimmunity, stroke, and dementia in a population cohort.METHODS: We will perform a hypothesis-driven candidate pathway association study of type I interferon-related genes using rare variants in the UK Biobank (UKB). We will manually curate type I interferon regulation and signalling genes from a literature review and Gene Ontology, followed by clinical and functional filtering. Variants of interest will be included based on pre-defined clinical relevance and functional annotations (using LOFTEE, M-CAP and a minor allele frequency &lt;0.1%). The association of variants with 15 clinical and three neuroradiological phenotypes will be assessed with a rare variant genetic risk score and gene-level tests, using a Bonferroni-corrected p-value threshold from the number of genetic units and phenotypes tested. We will explore the association of significant genetic units with 196 additional health-related outcomes to help interpret their relevance and explore the clinical spectrum of genetic perturbations of type I interferon.ETHICS AND DISSEMINATION: The UKB has received ethical approval from the North West Multicentre Research Ethics Committee, and all participants provided written informed consent at recruitment. This research will be conducted using the UKB Resource under application number 93160. We expect to disseminate our results in a peer-reviewed journal and at an international cardiovascular conference.</p
    corecore