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Abstract 

Background

Type I interferons are cytokines involved in innate immunity against 
viruses. Genetic disorders of type I interferon regulation are 
associated with a range of autoimmune and cerebrovascular 
phenotypes. Carriers of pathogenic variants involved in genetic 
disorders of type I interferons are generally considered 
asymptomatic. Preliminary data suggests, however, that genetically 
determined dysregulation of type I interferon responses is associated 
with autoimmunity, and may also be relevant to sporadic 
cerebrovascular disease and dementia. We aim to determine whether 
functional variants in genes involved in type I interferon regulation 
and signalling are associated with the risk of autoimmunity, stroke, 
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and dementia in a population cohort.

Methods

We will perform a hypothesis-driven candidate pathway association 
study of type I interferon-related genes using rare variants in the UK 
Biobank (UKB). We will manually curate type I interferon regulation 
and signalling genes from a literature review and Gene Ontology, 
followed by clinical and functional filtering. Variants of interest will be 
included based on pre-defined clinical relevance and functional 
annotations (using LOFTEE, M-CAP and a minor allele frequency 
<0.1%). The association of variants with 15 clinical and three 
neuroradiological phenotypes will be assessed with a rare variant 
genetic risk score and gene-level tests, using a Bonferroni-corrected 
p-value threshold from the number of genetic units and phenotypes 
tested. We will explore the association of significant genetic units with 
196 additional health-related outcomes to help interpret their 
relevance and explore the clinical spectrum of genetic perturbations 
of type I interferon.

Ethics and dissemination

The UKB has received ethical approval from the North West 
Multicentre Research Ethics Committee, and all participants provided 
written informed consent at recruitment. This research will be 
conducted using the UKB Resource under application number 93160. 
We expect to disseminate our results in a peer-reviewed journal and 
at an international cardiovascular conference.

Keywords 
stroke, dementia, interferonopathy, lupus, inflammation, type I 
interferon, genetics, variants, UK Biobank

 
Page 2 of 15

Wellcome Open Research 2023, 8:550 Last updated: 08 JUN 2024



Corresponding author: David Hunt (David.Hunt@ed.ac.uk)
Author roles: Rioux B: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, 
Writing – Original Draft Preparation; Chong M: Conceptualization, Writing – Review & Editing; Walker R: Conceptualization, Writing – 
Review & Editing; McGlasson S: Conceptualization, Writing – Review & Editing; Rannikmäe K: Conceptualization, Writing – Review & 
Editing; McCartney D: Conceptualization, Writing – Review & Editing; McCabe J: Conceptualization, Writing – Review & Editing; Brown R: 
Conceptualization, Writing – Review & Editing; Crow YJ: Conceptualization, Writing – Review & Editing; Hunt D: Conceptualization, 
Supervision, Writing – Review & Editing; Whiteley W: Conceptualization, Supervision, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by Wellcome [216767, https://doi.org/10.35802/216767, a Longitudinal Population Studies 
– full award to DM; 215621, https://doi.org/10.35802/215621, a Senior Research Fellowship to DH]. BR is supported by the Centre for 
Clinical Brain Sciences of the University of Edinburgh (Rowling & Dr Hugh S P Binnie scholarship), the Canadian Institutes of Health 
Research (CIHR; Doctoral Foreign Study Award, DFD-187711), the Fonds de recherche du Québec – Santé and the Ministère de la Santé et 
des Services sociaux du Québec (joint clinician-investigator fellowship), and the Power Corporation of Canada Chair in Neurosciences of 
the University of Montreal (research scholarship). KR is supported by Health Data Research UK (Rutherford fellowship MR/S004130/1), 
and the Wellcome Trust-University of Edinburgh Institutional Strategic Support Fund. SM is supported by the Clayco Foundation for RVCL 
research. RB is supported by an Association of British Neurologists Clinical Research Training Fellowship funded by the Guarantors of 
Brain. DH is supported by the Medical Research Foundation. WW is supported by the Chief Scientist Office of the Scottish Government 
(CAF/17/01), the UK Alzheimer’s Society and the Stroke Association, the National Institute for Health and Care Research (NIHR) and the 
National Institutes of Health (NIH). Funding sources had no role in the design or conduct of the study. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2023 Rioux B et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Rioux B, Chong M, Walker R et al. Phenotypes associated with genetic determinants of type I interferon 
regulation in the UK Biobank: a protocol [version 1; peer review: 2 approved] Wellcome Open Research 2023, 8:550 
https://doi.org/10.12688/wellcomeopenres.20385.1
First published: 23 Nov 2023, 8:550 https://doi.org/10.12688/wellcomeopenres.20385.1 

 
Page 3 of 15

Wellcome Open Research 2023, 8:550 Last updated: 08 JUN 2024

mailto:David.Hunt@ed.ac.uk
https://doi.org/10.35802/216767
https://doi.org/10.35802/215621
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.20385.1
https://doi.org/10.12688/wellcomeopenres.20385.1


Strengths and limitations of this study
•    The UK Biobank is the largest whole-exome sequenc-

ing project to date, with marked power to detect  
associations from a limited number of rare, functional  
variants.

•    Our study will leverage current knowledge of interferon 
biology and genotype-phenotype correlations in Mendelian 
diseases of type I interferon to test biologically  
plausible hypotheses.

•    The UK Biobank includes phenotypes from multiple 
sources, which improves classification accuracy for  
several health outcomes such as stroke and dementia.

•    We will carefully select genes and variants with strong 
evidence of biological relevance to optimize the 
power of our analyses, which is particularly relevant 
for less common phenotypes in the UK Biobank such  
as systemic lupus erythematosus.

•    We will increase the specificity of predicted loss-of-func-
tion variants by using stringent sample quality control and 
filtering criteria.

Introduction
Interferons are a family of innate inflammatory cytokines pri-
marily secreted by host cells in response to viruses (type I: 
mainly interferon-α and -β; type II: interferon-γ; type III: 
interferon-λ). Interferon-stimulated genes are involved in a  
wide range of processes, namely cellular defence against path-
ogens, apoptosis, nucleic acid degradation, and cell-to-cell 
communication1. Defects in type I interferon homeostasis are 
associated with autoimmunity, being implicated in the patho-
genesis of systemic lupus erythematosus and other autoimmune 
disorders such as rheumatoid arthritis, Sjögren’s syndrome, and 
scleroderma2. Low-grade type I interferon upregulation may  
also contribute to sporadic cerebrovascular disease and dementia. 
Preclinical data suggest type I interferon-related vascular 
inflammation is an essential contributor to atherosclerosis 
and may be involved in cerebral small vessel disease3,4.  
Stroke risk is increased after long-term exposure to exog-
enous recombinant type I interferon4,5, whereas white matter 
hyperintensities (a radiological manifestation of cerebral 
small vessel disease), large vessel disease and stroke are more  
frequent in people with systemic lupus erythematosus as  
compared to the general population6,7.

Genetic type I interferonopathies are a group of rare  
Mendelian autoinflammatory diseases hypothesised to be 
caused by an upregulation of type I interferons. Affected  
individuals with Aicardi-Goutières syndrome, the first type I  
interferonopathy described, most frequently present in early  
childhood with progressive encephalopathy, skin vasculopathy,  
and autoimmunity8, in addition to prominent white matter  
hyperintensities, calcifications and large vessel disease (aneu-
rysms, arterial calcifications, stenoses) on brain imaging9. Most,  
albeit not all (e.g., mutations in IFIH1, STING and COPA),  

pathogenic variants associated with type I interferonopathies 
result in a loss-of-function (LOF) of key interferon negative reg-
ulators inherited as autosomal recessive traits. Carriers of such 
pathogenic variants are generally considered asymptomatic, 
although growing evidence from case series suggests they may 
also exhibit high expression of interferon-stimulated genes10 
and have mild interferonopathy-related traits11,12. Uncertainty 
remains, however, as to whether carriers of pathogenic variants  
in genes involved in type I interferon signalling and regulation 
have an increased risk of interferonopathy-related phenotypes 
such as autoimmunity, cerebrovascular disease, and dementia. 
Moreover, the causal role of type I interferon in sporadic  
cerebrovascular disease and dementia has not been compre-
hensively assessed in a population-based study13, and whether  
findings from preclinical studies and observations in condi-
tions with impaired interferon homeostasis translate to the  
general population is unclear.

We will apply a candidate pathway approach to determine 
whether functional variants in genes involved in type I interferon 
regulation and signalling are associated with clinical and  
neuroradiological interferonopathy phenotypes in the general 
population. We hypothesize that a subset of rare functional 
variants that result in an upregulation of the type I interferon  
cascade are associated with core interferonopathy phenotypes.

Methods
We will report our results using guidance from the Strengthen-
ing the Reporting of Genetic Association Studies (STREGA) 
initiative14, and present the protocol checklist in Supplemental 
methods 1 that is available as Extended data15. We present 
a graphical abstract of our protocol in Figure 1. An  
earlier version of this manuscript can be found on medRxiv  
(doi: 10.1101/2023.10.12.23296935).

Public and Patient Involvement
Patients and the public were not involved in the design of  
this study.

Study population and exome extraction
We will use data from the UK Biobank (UKB), a large  
population-based cohort of 502,650 participants mostly of 
white British ancestry who were aged 40–69 years when 
recruited from UK patient registries between 2006 and 2010 
(response rate: 5.5%)16,17. We will consider individuals with  
whole-exome sequencing based on the final exome data release  
(July 2022; n=469,807; 93.5% of participants). The exome 
was sequenced in two batches composed of the first 50k  
participants (phase 1) and all other samples (phase 2). Participants 
in the first phase were selected to enrich certain phenotypes, 
which may lead to spurious associations given time-varying 
sequencing coverage if this batch effect is not controlled  
(see below).

Genomic DNA samples were sent to the Regeneron Genetics 
Centre (Tarrytown, New York, USA) as part of a collabora-
tion with the UKB and stored at -80°C. Genomic libraries  
with a mean fragment size of 200 base pairs (bp) were  
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created enzymatically and tagged with barcodes of 10 bp before 
capture. Exome was obtained by next generation sequencing  
using the Illumina NovaSeq 6000 platform (S2 and S4 flow 
cells for the first and second phase, respectively) and a target- 
enrichment probe kit (IDT xGen® Exome Research Panel v1.0)  
to enable deep and uniform coverage of ~39 Mbp (19,396 genes).

Whole-exome sequencing data
We will use the multi-sample project-level VCF (pVCF) files 
made available by the UKB18. To obtain these joint genotype 
data, raw sequencing outputs (FASTQs) were initially processed 
into sample-level aligned sequences (CRAMs) with a stand-
ard protocol (the Original Quality Functionally Equivalent; 
OQFE), which maps short sequences to the GRCh38 reference 
genome with alternate loci and marks duplicate segments19. 
DeepVariant (v0.10.0) was used to call variants from  
sample-level CRAMs and produce variant call data (gVCF) for 
each participant20. This calling approach uses a deep convolu-
tional neural network to determine the most likely genotype 
at each locus from the reference genome, base reads and  

quality scores21. It outperforms existing state-of-the-art tools 
to call single nucleotide variants (SNVs) and small insertions 
or deletions (indels; up to 50 bp by definition), achieving 
high overall accuracy (>99.5%)21,22. The variant call data set 
includes exome capture targets and their immediate flanking  
regions (100 bp upstream and downstream of each target).  
Sample-level variants were aggregated into joint genotype pVCF  
files with a standard analysis pipeline (GLnexus v1.2.6)20,23.

For quality control, we will exclude participants with a mismatch 
between their genetically recorded and self-reported sex or 
with sex chromosome aneuploidy (~0.2%). We will apply 
a set of quality control metrics as previously employed for 
the UKB exome to analyse variants with24:

i)    individual and variant missingness <10%;

ii)    Hardy Weinberg equilibrium p-value >10-15;

iii)    at least one sample per site with allele balance threshold 
>0.15 for SNVs and >0.20 for small indels;

Figure 1. Graphical summary of the study methodology. This summary illustrates the three main steps of the study: i) genes of 
interest will be identified from a literature review and Gene Ontology, followed by clinical and functional filtering, ii) variants of interest will 
be included based on their clinical relevance and functional annotations, and iii) the association of variants and phenotypes will be tested 
with a rare variant genetic risk score and gene-level tests. Abbreviations: ICD, International Classification of Diseases; LOFTEE, Loss-Of-
Function Transcript Effect Estimator; M-CAP, Mendelian Clinically Applicable Pathogenicity score; NCBI, National Center for Biotechnology 
Information; OMIM, Online Mendelian Inheritance in Man; OQFE, Original Quality Functionally Equivalent; pLOF, predicted loss-of-function; 
SKAT-O, optimal sequence kernel association test; VEP, Variant Effect Predictor. Created with BioRender.com.
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iv)    minimum read coverage depth of seven for SNVs and 10 
for indels.

We will also use a sequencing depth ≥10x in 90% of samples 
for our rare variant analysis, to prevent spurious associations 
that may result from batch effect25. We will resolve haplotype 
phase with the Segmented HAPlotype Estimation and Imputa-
tion Tools version 5 (SHAPEIT5 v1.0.0), which phases rare 
variants from the UKB with high accuracy (switch error rate  
<5% with minor allele count >5)26.

Genes of interest
We will apply a hypothesis-driven candidate pathway approach 
of type I interferon-related genes by adapting a previously 
described methodology27. We will consider for inclusion any  
gene encoding a protein of interest belonging to one of the three 
following categories:

1.    A negative regulator, positive regulator, or effector 
along the main signalling pathway of type I interferon  
(Figure 2);

2.    A protein directly affecting the activity of an interferon 
regulator or effector (e.g., E3 ubiquitin-protein ligase 

TRIM21 inhibits interferon regulatory factor 3, a tran-
scription factor that controls multiple type I interferon-
inducing pathways; both proteins are therefore considered  
for inclusion);

3.    A protein involved in genetic type I interferonopa-
thies (see Supplemental Table 1 available as Extended  
data15).

We did not consider regulatory proteins acting beyond the second 
order of regulation (e.g., regulators of E3 ubiquitin-protein 
ligase TRIM21) to adequately balance the need to include impor-
tant regulators of type I interferon, while maintaining their  
specificity to type I interferon signalling.

We will produce a preliminary list of genes from i) recently 
published reviews on type I interferon biology and ii) annota-
tions in Gene Ontology28. We present herein both completed 
and upcoming steps. First, we searched Ovid MEDLINE to 
identify reviews describing ≥2 proteins of interest in physi-
ological conditions. We used interferons (of any type to  
increase the sensitivity of our search) and regulation as main  
concepts, in addition to a previously published hedge for reviews 
(Table 1)29. We queried MEDLINE from January 2000 onwards 

Figure 2. Overview of the interferon cascade. Graphical overview of the main steps involved in interferon regulation and signalling. 
Endogenous nucleases (blue circle sectors) remove nucleic acids (red confetti) that can trigger interferon production. Abnormal accumulation 
of endogenous material through impaired regulation (box 1) and viral nucleic acids (not shown) can trigger interferon production through 
linkage to i) toll-like receptor sensors at the cell membrane surface (not shown) and at endosomes, and ii) cytoplasmic sensors (box 2). 
Interferons are sensed by cell surface receptors specific to types I (heterodimer with subunits IFNAR1 and IFNAR2), II (heterotetramer with 
two IFNGR1 and two IFNGR2 subunits) and III (heterodimer with subunits IFNLR1 and IL-10R2) ligands. Signal transduction and intracellular 
signalling through JAK-STAT activates the transcription of interferon-stimulated genes (box 3). Abbreviations: GAS, gamma-activated 
sequence; IFN, interferon; IRF, interferon regulatory factor; ISG, interferon-stimulated gene; ISRE, interferon-stimulated response element; 
TLR, toll-like receptor. Created with BioRender.com.
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to only include recent reviews, and conducted our search in 
English as we expected reviews in other languages to present 
similar information. Our strategy yielded 194 records. A sin-
gle author (BR) will screen records by title and abstract, and 
include relevant articles after full-text reading. We will manually 
add four recent reviews8,9,30,31 on genetic interferonopathies to  
ensure these genes are captured. A single author (BR) will 
extract relevant proteins, their corresponding genes, and their  
presumed functions.

Second, we have queried the Gene Ontology resource to vali-
date and enrich our gene set. Gene Ontology provides curated 
gene-specific knowledge with functional annotation and hier-
archical relationships28,32,33. We extracted a list of 194 genes 
pertaining to 31 ontology terms relevant to type I interferon 
(Supplemental Table 215). We will validate presumed gene 
product function from reviews and Gene Ontology on the  
UniProt platform34 and the National Center for Biotechnology 
Information (NCBI) Gene database35 before assigning 
their function (e.g., negative regulator) and level of action 
(e.g., downstream to receptors). Discrepancies will be resolved 
through consensus by three authors with expertise in interferon  
biology (BR, SM, DH).

From this preliminary list of genes, we will only include those 
with ≥1 variant associated with a Mendelian disease through  

any effect on protein function to strengthen their biological 
relevance. We will search the Online Mendelian Inheritance 
in Man (OMIM)36 and the NCBI ClinVar37 clinical annota-
tion databases for genotype-phenotype correlations. We will 
validate that all top 21 type I interferon-inducible genes in  
systemic lupus erythematosus are included in our list, and  
add missing items38.

Variants of interest
We will include both SNVs and small indels in genes of 
interest with ≥1 of the following protein effects: i) LOF,  
dominant-negative, or gain-of-function (GOF) disease-causing 
variants through an autosomal dominant, recessive or X-linked 
inheritance39, or ii) predicted LOF variants from functional 
annotations. We will define disease-causing variants as those  
reported in ClinVar (as pathogenic or likely pathogenic, exclud-
ing variants with conflicting interpretations of pathogenic-
ity), OMIM (as disease-causing), and from discussion with 
clinical experts in interferonopathies (DH, SM, YC). The pro-
tein-level effect will be determined through comments and 
linked publications in ClinVar, descriptions in OMIM or, if  
undetermined, inferred from resulting phenotype.

We will also define a second set of putative functional vari-
ants identified in UKB participants to increase our statistical 
power40. We will assess the functional impact of these variants 

Table 1. Ovid MEDLINE search strategy.

Line Entry Records

Interferon concept

1 (cytokine* adj (inflammat* or proinflammat*)).tw. 422

2 IFN*.ti. 15433

3 Interferons/ 25640

4 1 or 2 or 3 40607

Regulation concept

5 (regulat* or metabolism or biology or function).ti 1191801

Review design hedge

6 meta analysis.mp,pt. or review.pt. or search:.tw. 3563440

Combine concepts

7 4 and 5 and 6 390

8 7 not ((exp animal/ or nonhuman/) not exp human/) 357

9 8 not (case study/ or case report/) 356

10 limit 9 to dt=20000101-20230110 214

11 limit 10 to English language 194
This table presents the search strategy conducted in Ovid MEDLINE on 10 
January 2023. Abbreviations: adj, adjacent; dt, create date; exp, explode; mp, 
multi-purpose fields; pt, publication type; ti, text word in title; tw, text word in title 
and abstract.
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on Ensembl with the Variant Effect Predictor (VEP), an online 
resource that returns annotations on the effect of variants on 
transcripts and proteins41. We will interpret variant pathogenic-
ity with the Loss-Of-Function Transcript Effect Estimator  
(LOFTEE) and the Mendelian Clinically Applicable Patho-
genicity score (M-CAP v1.4). The LOFTEE filtering criteria 
will be used to annotate non-missense predicted LOF vari-
ants, as it provides a conservative filtering strategy to increase 
specificity (e.g., removal of variants predicted to escape  
nonsense-mediated decay) and was used to annotate variants in 
the Genome Aggregation Database (gnomAD; a public resource  
of ~126k high-quality exomes from around the world that 
does not include UKB data)42 and Genebass (a public resource 
of exome-based genotype-phenotype associations within the  
UKB)43. The M-CAP score will be used to interpret pathogenic-
ity and nominate missense variants for inclusion44. This super-
vised learning classifier incorporates nine established pathogenic-
ity likelihood scores (namely SIFT and PolyPhen-2) and achieves 
substantial reduction in the misclassification rate of known 
pathogenic variants (<5%) as compared to other existing meth-
ods (26-38%)44. We will define predicted LOF variants as either  
i) variants that inactivate a protein-coding gene through a pre-
mature stop codon, a shift in the transcriptional frame or an 
alteration of essential splice-site nucleotides (from LOFTEE), 
or ii) missense variants classified as likely pathogenic (from 
M-CAP). We will apply a minor allele frequency (MAF) 
threshold <0.1% in both the UKB and gnomAD to lower 
the probability of including benign variants and improve our  
statistical power. Using a more liberal MAF threshold of 
<1%, 8.03 million SNVs were identified in ~200k UKB par-
ticipants, of which 5.4% (~450k) were predicted LOF variants24.  
In gnomAD, which used LOFTEE without MAF threshold,  
about 40% of genes had >10 predicted LOF variants42.

Phenotypes of interest
We will test the association of selected variants with a set of 
15 clinical and three neuroradiological phenotypes of inter-
est in the UKB. These phenotypes were selected based on their 
frequency in the general population and the UKB, the plau-
sibility of their association with type I interferon upregula-
tion, and from type I interferonopathy clinical presentations 
(including Mendelian and sporadic diseases). The International  
Classification of Diseases (ICD) diagnostic codes and UKB fields 
for each phenotype are presented in Supplemental Table 3 avail-
able as Extended data15. Genes associated with ≥1 phenotype 
of interest will be assessed for their association with 196 clini-
cal phenotypes to help interpret their relevance (Supplemental 
Table 4, Extended data15). We manually grouped ICD-coded 
diagnoses by pathophysiology to reduce multiple testing and  
improve power for less common conditions. As part of the phe-
nome analysis, we will test two stroke definitions developed by  
Rannikmäe et al.,45 to help explain potential misclassifications.

Health-related outcomes were captured through self-completed 
questionnaires followed by a nurse-led interview on past  
medical history (at baseline in all and during follow-up for 
some participants), as well as data linkage with ICD-coded  
hospital admissions from National Health Service (NHS) reg-
istries (primary or secondary diagnoses; ICD v9 and v10) and  

national death registries (primary and secondary causes of 
death; ICD v10). Diagnostic codes from primary care (Read 
codes v2 and v3) are available in a subset of participants 
(~45.8%). Cancer diagnoses (ICD v9 and v10) are available 
through data linkage with national cancer registries. Stroke  
diagnoses from hospital and death registries have a high sensi-
tivity (point estimate range: 88-94%) and specificity (>99%)46. 
Most stroke cases in the UKB are from hospital and death  
registries, although ~27% are self-reported without coded  
diagnosis45. Self-reported strokes have a lower sensitivity 
(79%) but maintain a high specificity (99%)47. In-hospital and 
death records for all-cause dementia in the UKB have a positive  
predicted value of ~85%48.

We will define phenotypes in the UKB using algorithmi-
cally defined (or adjudicated) outcomes (v2.0), first diagnos-
tic occurrences, and cancer registries. Algorithmically defined 
outcomes are custom diagnostic classification schemes devel-
oped by the UKB from self-reports, hospital admissions and 
death registries to optimize their positive predictive value. 
First diagnostic occurrences map clinical terms from all avail-
able sources into ICD v10 codes (apart from cancer registries).  
Algorithmically defined outcomes and first diagnostic occur-
rences will be combined to identify any stroke, ischemic stroke, 
intracerebral haemorrhage, subarachnoid haemorrhage, all-cause 
dementia, Alzheimer’s disease, vascular dementia, Parkinson’s 
disease and myocardial infarction49. We chose to combine 
these two fields to capture primary care events (not included 
in algorithmically defined outcomes), which is expected to 
increase the number of cases from 0.7% (n=55) for all-cause  
dementia to 11.4% (n=1,376) for ischemic stroke. First 
diagnostic occurrences will be used alone for other non- 
cancerous conditions. Data from cancer registries will be used  
to define malignant neoplasms.

We will define three neuroradiological phenotypes: total white 
matter hyperintensity (WMH) volume, total brain (grey plus 
white matter) volume, and hippocampal grey matter (mean) 
volume50. Brain magnetic resonance imaging (MRI) scans 
were obtained in ~42k participants on 3T Siemens Skyra scan-
ners running VD13A SP4 with a standard Siemens 32-channel 
radio-frequency receiver head coil. The UKB MRI quality con-
trol pipeline includes a pre-processing step to correct for head  
motion and other artifacts followed by automated identifica-
tion of equipment failure and excessive artifacts51. We will 
normalize WMH and hippocampal grey matter volumes for 
head size using the UKB scaling factor derived from the  
external surface of the skull. The normalized total brain  
volume is available as an imaging-derived phenotype. We will  
log-transform WMH volumes given their right-skewed (log- 
normal) distribution.

The total WMH volume of presumed vascular origin per  
individual was generated by an image-processing pipeline51  
followed by a segmentation algorithm (the Brain Intensity  
Abnormality Classification Algorithm tool; BIANCA) using 
both T1- and T2-weighted/fluid-attenuated inversion recovery  
(FLAIR) sequences52. The algorithm results in high volumet-
ric agreement (intraclass correlation coefficient = 0.99) and 
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very good spatial overlap index (dice similarity index = 0.76)  
with manual segmentation. Total brain (including the cer-
ebellum and the brainstem, as low as space-based brain  
masking allows) and regional brain volumes were extracted 
using tissue-segmented images obtained from an automated 
algorithm (FMRIB’s Automated Segmentation Tool; FAST)53 
and passed on to the SIENAX analysis pipeline to accurately 
measure volumetric phenotypes (relative mean error in brain  
volume = 0.4%)54. We will use the mean hippocampal grey 
matter volume (from right and left hippocampi) as this radio-
logical marker of hippocampal atrophy is associated with  
memory loss and progression to Alzheimer’s disease55.

Statistical analyses
Our primary (score-based) analysis will test the association 
of all selected genes modelled into a rare variant genetic risk 
score (RVGRS) with individual phenotypes. We will regress 
each phenotype on standardized scores using logistic and linear 
regressions for binary and continuous outcomes, respectively. 
We will adapt a previously described methodology56 to define 
our score as the weighted sum of the number of variants  
per individual i and gene g (V

i,g
), given a set of M genes:

,
1

β
=

= ∑
M

i iRVGRS Vg g
g

Gene-level weights will be allocated from theoretical variant 
effects on the type I interferon cascade. For example, LOF 
variants in genes encoding negative regulators will receive a 
positive weight (+1) as they are expected to upregulate the  
cascade, whereas those in genes encoding positive regulators  
or effectors will receive a negative weight (-1). We chose this 
conservative weighting method given the technical limitations 
of weighting variants from a transcriptomic signature (unavail-
able in the UKB) or a proteomic profile (no measurement of  
type I interferon in the UKB Olink proteomics).

Our secondary analysis will test gene-level associations 
with individual phenotypes using the optimal sequence ker-
nel association test (SKAT-O) framed into SAIGE-GENE+. 
The SKAT-O test leverages the advantages of burden tests and 
SKAT through a linear combination of their test statistics, the 
relative contribution of which are estimated by a correlation  
term57. We chose this method to balance the need to maxim-
ise power for genes that have a higher proportion of causal 
variants satisfying the burden test assumption, while preserv-
ing power for genes that may have fewer causal variants (or 
variants with heterogeneous effects) despite our filtering strat-
egy. The SAIGE-GENE+ method builds upon SKAT-O to  
reduce type I error inflation for very rare variants in large 
biobanks with unbalanced case-control ratios, reduce com-
putational resources and account for sample relatedness58. 
We will use a relatedness coefficient cut-off of ≥0.125 (up to  
third-degree relatedness) in SAIGE-GENE+, and perform our 
analyses using the open-source R package SAIGE (https://
github.com/saigegit/SAIGE). We will include the first 10 
genetic principal components in the gene-level (combined with 
the generalized mixed model approach in SAIGE-GENE+) 

and RVGRS models to control for population structure59, in  
addition to adjusting for age and sex60. We will also adjust 
for scanner site in neuroradiological analyses to control for 
potential technical confounding61. We will run separate gene-
level tests for LOF/dominant negative and GOF variants to 
account for their anticipated opposite effect directions. As 
SKAT-O is designed to test the overall gene-trait association  
and does not produce effect sizes, variant-level effects will 
be obtained through separate logistic and linear regressions 
to help interpret p-values (as in Genebass). Genetic units  
with <10 carriers of any variant in the UKB will not be analysed  
to preserve power.

Our score and individual genes will be tested for their asso-
ciation with each phenotype of interest (n=18), and those with 
≥1 statistically significant association with any phenotype of 
interest will be tested for associations across the phenome 
(n=196). We will interpret statistical significance in our score-
based analysis with a Bonferroni-corrected p-value threshold 
to account for multiple testing across phenotypes (phenotypes 
of interest: 0.05/18=2.78x10-3; phenome: 0.05/196=2.55x10-4).  
We will interpret statistical significance in our gene-level anal-
ysis similarly, with a more stringent correction to account 
for multiple testing across genes and phenotypes (0.05/[# 
phenotypes x # gene-level units])62. Our analyses will be  
conducted on the UK Biobank Research Analysis Platform63. We  
present our pre-planned sensitivity analyses in Supplemental  
methods 2, Extended data15.

Power calculations
We performed a statistical power analysis for our gene-level 
tests and phenotypes of interest with SKAT-O using the SKAT 
package (v2.2.5) for R. Our results and analysis parameters are 
presented in Figure 3 and detailed in Supplemental methods 3, 
Extended data15. Gene-level tests for lupus and vascular dementia 
have the lowest powers overall although they increase to reason-
able values in more optimistic scenarios. Other cardiovascular 
and inflammatory outcomes have the highest power throughout  
all scenarios.

Study status
This study is ongoing (preliminary selection of genes and  
variants).

Discussion
Comprehensive phenotyping of interferonopathy variant  
carriers may expand the clinical spectrum of genetic type I  
interferonopathies and help understand the biological  
relevance of type I interferon dysregulation in the general  
population. Importantly, large population-based assessments of 
interferonopathy carriers are lacking. Our study will leverage 
knowledge of Mendelian diseases of type I interferon to develop 
an informed, hypothesis-driven candidate pathway approach 
to investigate the frequency and phenotype associations of  
low-grade type I interferon dysregulation in the UKB. Our  
results will help understand the clinical spectrum of genetic  
type I interferonopathies, and will provide insights into the  
role of type I interferon in sporadic conditions.
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Recent meta-analyses of genome-wide association studies 
(GWASs) have strengthened the case of inflammatory contribu-
tors to stroke and dementia. The largest cross-ancestry GWAS 
meta-analysis on stroke to date identified 89 independent genomic 
risk loci, of which two newly reported loci were located near or 
within genes involved in type I interferon regulation or signal-
ling (PTPN11 and TAP1)64. A recent large GWAS meta-analysis 
on Alzheimer’s disease and related dementias identified 33 
known and 42 new genomic loci, for which a pathway analysis  
exposed significant gene sets related to immunity, includ-
ing macrophage and microglia activation65. The nearest genes 
of two new lead variants, SHARPIN and RBCK1, encode 
essential components of the linear ubiquitin chain assem-
bly complex (LUBAC), involved in NF-κB activation. Despite  
these discoveries, GWASs are unable to identify rarer alle-
les that may carry important information on the biology of 
complex traits, while most variants in genomic risk loci are 
mapped outside coding regions and have unknown regulatory  
functions66,67.

Strengths and limitations
The UKB is the largest whole-exome sequencing project to 
date, markedly improving power to detect associations from 
a limited number of rare, functional variants68. Our informed 
approach will leverage current knowledge on type I interferon 
biology to reduce noise and test biologically plausible hypoth-
eses. This contrasts with prior hypothesis-free phenome-wide 

association studies using rare variants in the UKB such as  
Genebass43 and PheWAS69, which did not include clinical  
annotations, used uncurated phenotypes, introduced greater  
multiple-testing burden (~4.5k and ~17k phenotypes tested in 
Genebass and PheWAS, respectively), and often used small 
sample sizes (as few as 30 cases/phenotype in PheWAS). The 
UKB also enables phenotyping from multiple sources, improv-
ing the classification accuracy for stroke and dementia as 
compared to studies using minimal phenotyping (e.g., case  
definition from self-reported dementia in relatives)65.

Our study, however, will have some limitations. First, we expect 
that our weighting strategy based on theoretical knowledge 
will introduce noise into our score. We were technically una-
ble to reliably assign empirical weights because of the lack of 
relevant transcript or protein measurements in the UKB. We  
anticipate this noise will be reduced by carefully selecting  
genes for which variants have a higher likelihood of functional  
and clinical consequences. We will also test genes individu-
ally as an alternative that does not mandate weights. Second, we  
anticipate some degree of residual pleiotropy through overlap-
ping inflammatory and non-inflammatory pathways despite 
our careful curation of genes to increase specificity to the type I 
interferon cascade. We will, however, explore the relevance of 
pleiotropic effects on our results with a proteomic sensitivity  
analysis (Supplemental methods 2, Extended data15). Third, 
although we will optimize our overall power by carefully  

Figure 3. Power calculations for gene-level tests with phenotypes of interest using SKAT-O. The power calculation assumes an 
α=1.11x10-5, a genetic sampling length of 2,962 bp, a MAF <0.1%, an empirical optimal correlation coefficient, and sample sizes observed in 
the UKB. Abbreviations: AD, Alzheimer’s disease; AF, atrial fibrillation; bp, base pairs; BrV, total brain (grey plus white matter) volume; CKD, 
chronic kidney disease; Dem, all-cause dementia; HipV, hippocampal grey matter volume (average); IBD, inflammatory bowel disease; ICH, 
intracerebral haemorrhage; IHD, ischemic heart disease; IS, ischemic stroke; MAF, minor allele frequency; PAD, peripheral artery disease; 
RA, rheumatoid arthritis; SAH, subarachnoid haemorrhage; SCTD, systemic connective tissue disorder; SLE, systemic lupus erythematosus; 
VascD, vascular dementia; WMHV, total white matter hyperintensity volume.
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selecting clinically relevant genes and functional variants,  
our power will likely remain lower for rarer phenotypes.

Ethics and dissemination
The UKB has received ethical approval from the North West 
Multicentre Research Ethics Committee, and all participants  
provided written informed consent at recruitment. This research 
will be conducted using the UKB Resource under application 
number 93160. We expect to disseminate our results in a  
peer-reviewed journal and at an international cardiovascular  
conference.

Data availability
Underlying data
No data are associated with this article.

Extended data
Zenodo: Phenotypes associated with genetic determinants of  
type I interferon regulation in the UK Biobank: a protocol. https://
zenodo.org/doi/10.5281/zenodo.1011854615.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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Rioux et al describe the protocol of a proposed hypothesis-driven study to ascertain the genetic 
association between the interferon pathway and common neurological and cardiovascular 
diseases. The rationale for such a study is strong given that IFN signalling has been linked 
mechanistically to molecular processes underlying many diseases. Deeper understanding of this 
interplay gained by mining the UK Biobank would be highly valuable.  
 
In neurodegeneration, there is strong observational and mechanistic evidence that the IFN system 
is important in disease, but currently a relative paucity of genetic association (absent a few genes 
downstream of IFN and LUBAC). It is not clear if this is because the IFN system is not a disease-
driving process, or because the tools to identify risk variants lack power to identify rarer variants. 
This pathway-focussed study is therefore timely and important in this field. 
 
As many of the proposed phenotypes are potentially associated with infection, the control of 
which is an essential function of IFN, there is a possibility that genetic variants may be influencing 
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Parkinson's disease is not listed as a phenotype of interest in Supp Table 3 (other than in its 
contribution to all-cause dementia). Given recent evidence of a link between IFN and underlying 
molecular mechanisms (for example the ability of IFN-gamma to exacerbate LRRK2 variants (1)) 
and the appearance of IFN-regulated transcripts in disease (2) I would suggest PD as a strong 
candidate for inclusion in the study. 
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