66 research outputs found

    Deep LSTM with Guided Filter for Hyperspectral Image Classification

    Get PDF
    Hyperspectral image (HSI) classification has been a hot topic in the remote sensing community. A large number of methods have been proposed for HSI classification. However, most of them are based on the extraction of spectral feature, which leads to information loss. Moreover, they rarely consider the correlation among the spectrums. In this paper, we see spectral information as a sequential data which should be relevant to each other. We introduce long short-term memory (LSTM) model, which is a typical recurrent neural network (RNN), to deal with HSI classification. To tackle the problem of overfitting caused by limited labeled samples, regularization strategy is introduced. For unbalance in different classes, we improve LSTM by weighted cost function. Also, we employ guided filter to smooth the HSI that can greatly improve the classification accuracy. And we proposed a method for modeling hyperspectral sequential data, which is very useful for future research work. Finally, the experimental results show that our proposed method can improve the classification performance as compared to other methods in three popular hyperspectral datasets

    Modeling and Optimization of Stochastic Joint Replenishment and Delivery Scheduling Problem with Uncertain Costs

    Get PDF
    The stochastic joint replenishment and delivery scheduling (JRD) problem is a key issue in supply chain management and is a major concern for companies. So far, all of the work on stochastic JRDs is under explicit environment. However, the decision makers often have to face vague operational conditions. We develop a practical JRD model with stochastic demand under fuzzy backlogging cost, fuzzy minor ordering cost, and fuzzy inventory holding cost. The problem is to determine procedures for inventory management and vehicle routing simultaneously so that the warehouse may satisfy demand at a minimum long-run average cost. Subsequently, the fuzzy total cost is defuzzified by the graded mean integration representation and centroid approaches to rank fuzzy numbers. To find optimal coordinated decisions, a modified adaptive differential evolution algorithm (MADE) is utilized to find the minimum long-run average total cost. Results of numerical examples indicate that the proposed JRD model can be used to simulate fuzzy environment efficiently, and the MADE outperforms genetic algorithm with a lower total cost and higher convergence rate. The proposed methods can be applied to many industries and can help obtaining optimal decisions under uncertain environment

    Exploiting Rich Event Representation to Improve Event Causality Recognition

    Get PDF
    Event causality identification is an essential task for information extraction that has attracted growing attention. Early researchers were accustomed to combining the convolutional neural network or recurrent neural network models with external causal knowledge, but these methods ignore the importance of rich semantic representation of the event. The event is more structured, so it has more abundant semantic representation. We argue that the elements of the event, the interaction of the two events, and the context between the two events can enrich the event’s semantic representation and help identify event causality. Therefore, the effective semantic representation of events in event causality recognition deserves further study. To verify the effectiveness of rich event semantic representation for event causality identification, we proposed a model exploiting rich event representation to improve event causality recognition. Our model is based on multi-column convolutional neural networks, which integrate rich event representation, including event tensor representation, event interaction representation, and context-aware event representation. We designed various experimental models and conducted experiments on the Chinese emergency corpus, the most comprehensive annotation of events and event elements, enabling us to study the semantic representation of events from all aspects. The extensive experiments showed that the rich semantic representation of events achieved significant performance improvement over the baseline model on event causality recognition, indicating that the semantic representation of events plays an important role in event causality recognition

    Hybrid Neural Network for Automatic Recovery of Elliptical Chinese Quantity Noun Phrases

    Get PDF
    In Mandarin Chinese, when the noun head appears in the context, a quantity noun phrase can be reduced to a quantity phrase with the noun head omitted. This phrase structure is called elliptical quantity noun phrase. The automatic recovery of elliptical quantity noun phrase is crucial in syntactic parsing, semantic representation and other downstream tasks. In this paper, we propose a hybrid neural network model to identify the semantic category for elliptical quantity noun phrases and realize the recovery of omitted semantics by supplementing concept categories. Firstly, we use BERT to generate character-level vectors. Secondly, Bi-LSTM is applied to capture the context information of each character and compress the input into the context memory history. Then CNN is utilized to capture the local semantics of n-gramswith various granularities. Based on the ChineseAbstractMeaning Representation (CAMR) corpus and Xinhua News Agency corpus, we construct a hand-labeled elliptical quantity noun phrase dataset and carry out the semantic recovery of elliptical quantity noun phrase on this dataset. The experimental results show that our hybrid neural network model can effectively improve the performance of the semantic complement for the elliptical quantity noun phrases
    • …
    corecore