13 research outputs found

    An Optimal Energy Management Method for the Multi-Energy System with Various Multi-Energy Applications

    No full text
    As the development of the multi-energy system (MES), various ME applications are deployed. ME applications not only bring advanced functionalities to the MES, but also show great potentials in promoting the operation performance of the MES, especially improving the accommodation of renewable energy sources (RES). However, the realization of these potentials largely relies on the energy management, which shall facilitate the effective function of each ME application and the coordinated collaboration of all the ME applications. Without a comprehensive energy management methodology, ME applications may mutually interfere, which not only hinder the RES utilization, but also may harm the MES operation performance. In this premise, this paper integrates the energy management model of the combined cooling, heat and power plants, power-to-hydrogen/gas-to-power plants, and demand side management model of the EV charging loads into the energy management model of the MES, and proposes an comprehensive optimal day-ahead energy management framework to simultaneously improve the profit, RES utilization rate, and energy saving performance of the MES. To address the proposed optimization model, Elitist Non-dominated Sorting Genetic algorithm II algorithm is employed to heuristically find the Pareto-optimal results. Finally, case studies prove the effectiveness of the proposed methodology

    Relative Humidity Sensor Based on Microfiber Loop Resonator

    No full text
    A novel relative humidity (RH) sensor based on a microfiber loop resonator (MLR) is proposed and experimentally demonstrated. As refractive index of the microfiber in the MLR is modified by environmental humidity, resonant wavelength of the MLR changes with RH level. By detecting this wavelength shift, RH measurement is realized with a linear response sensitivity of 1.8 pm/% RH. The obvious advantage of this technique over others is that no coating of humidity-sensitive material is required

    Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer

    No full text
    A magnetic field sensor is proposed based on the combination of magnetic fluid (MF) and an optical microfiber mode interferometer (MMI). It is measured that the MMI is highly sensitive to ambient refractive index (RI) with a high sensitivity up to 16,539 nm/RIU while RI of the MF is changeable with an external magnetic field strength. By monitoring wavelength shift of transmission spectrum of the MMI, magnetic field measurement is realized with a maximum sensitivity of −293 pm/Oe in the range of 0–220 Oe.Accepted versio

    Intensity-modulated refractometer with long period fiber grating cascaded by chirped fiber grating

    No full text
    An intensity-modulated refractometer is proposed and experimentally demonstrated by using a long period fiber grating (LPG) cascaded with a chirped-fiber Bragg grating (CFBG). The reflection wavelength band of the CFBG was properly selected to contain the most sensitive spectral part of the LPG. As a result, intensity of the reflected signal was modulated linearly by refractive index (RI) of surrounding liquid outside the LPG. RI measurement in a range from 1.33 to ~1.45 was realized with enhanced sensitivity up to 48.93 μW/R.I.U.Published versio

    Magnetic field sensor with optical fiber bitaper-based interferometer coated by magnetic fluid

    No full text
    An optical fiber magnetic field sensor is demonstrated using a waist-enlarged fusion bitaper-based optical fiber Mach-Zehnder interferometer (MZI) coated by magnetic fluid (MF). Since refractive index (RI) of the MF is sensitive to magnetic field, differential effective RI of the sensing fiber and hence transmission spectrum of the MZI are modulated. In addition, structural pattern state of the nanoscaled magnetic particles in the MF changes with magnetic field strength, leading to variation in contrast of the interference pattern through scattering-induced loss of the cladding modes, which interfere with the core mode. By monitoring wavelength shift or intensity change of a transmission dip of the MF-coated MZI, magnetic field strength measurement is realized with sensitivity up to -24 pm/Oe or 0.085 dB/Oe for wavelength and intensity measurements, respectively.Accepted versio

    Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing

    No full text
    An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.Published versio

    Diagnostic and prognostic value of CEA, CA19–9, AFP and CA125 for early gastric cancer

    No full text
    Abstract Background The diagnostic and prognostic significance of carcinoembryonic antigen (CEA), carbohydrate associated antigen 19–9 (CA19–9), alpha-fetoprotein (AFP) and cancer antigen 125 (CA125) in early gastric cancer have not been investigated yet. Thus, the present study aimed to explore the diagnostic and prognostic significance of the four tumor markers for early gastric cancer. Methods From September 2008 to March 2015, 587 early gastric cancer patients were given radical gastrectomy in our center. The clinicopathological characteristics were recorded. The association between levels of CEA and CA19–9 and clinicopathological characteristics and prognosis of patients were analyzed. Results There were 444 men (75.6%) and 143 women (24.4%). The median age was 57 years (ranged 21–85). The 1-, 3- and 5-year overall survival rate was 99.1%, 96.8% and 93.1%, respectively. The positive rate of CEA, CA19–9, AFP and CA125 was 4.3%, 4.8%, 1.5% and 1.9%, respectively. The positive rate of all markers combined was 10.4%. The associations between the clinicopathological features and levels of CEA and CA19–9 were analyzed. No significant association was found between CEA level and clinicopathological features. However, elevated CA19–9 level was correlated with female gender and presence of lymph node metastasis. Age > 60 years old, presence of lymph node metastasis and elevation of CEA level were independent risk factors for poor prognosis of early gastric cancer. Conclusions The positive rates of CEA, CA19–9, APF and CA125 were relatively low for early gastric cancer. Elevation of CA19–9 level was associated with female gender and presence of lymph node metastasis. Elevation of CEA level was an independent risk factor for the poor prognosis of early gastric cancer

    DataSheet1_Synthesis of amorphous trimetallic PdCuNiP nanoparticles for enhanced OER.PDF

    No full text
    Metal phosphides with multi-element components and amorphous structure represent a novel kind of electrocatalysts for promising activity and durability towards the oxygen evolution reaction (OER). In this work, a two-step strategy, including alloying and phosphating processes, is reported to synthesize trimetallic amorphous PdCuNiP phosphide nanoparticles for efficient OER under alkaline conditions. The synergistic effect between Pd, Cu, Ni, and P elements, as well as the amorphous structure of the obtained PdCuNiP phosphide nanoparticles, would boost the intrinsic catalytic activity of Pd nanoparticles towards a wide range of reactions. These obtained trimetallic amorphous PdCuNiP phosphide nanoparticles exhibit long-term stability, nearly a 20-fold increase in mass activity toward OER compared with the initial Pd nanoparticles, and 223 mV lower in overpotential at 10 mA cm−2. This work not only provides a reliable synthetic strategy for multi-metallic phosphide nanoparticles, but also expands the potential applications of this promising class of multi-metallic amorphous phosphides.</p
    corecore