107 research outputs found

    Memristor Theory

    Get PDF
    Based on the problem that Moore's law of integrated circuit technology is about to fail, this paper studies the characteristics of memristor and its model. In today's information age, integrated circuit technology is the core of the whole information technology and information society. Memristor is considered as the fourth basic circuit element besides resistor, capacitor and inductor, and it has high speed and low power consumption Easy integration and compatibility with CMOS technology can meet the performance requirements of next-generation high-density information storage and high-performance computing for general-purpose electronic memory, which is regarded as the next generation of non-volatile memory technology

    An Interpretable Hybrid Predictive Model of COVID-19 Cases using Autoregressive Model and LSTM

    Full text link
    The Coronavirus Disease 2019 (COVID-19) has a profound impact on global health and economy, making it crucial to build accurate and interpretable data-driven predictive models for COVID-19 cases to improve policy making. The extremely large scale of the pandemic and the intrinsically changing transmission characteristics pose great challenges for effective COVID-19 case prediction. To address this challenge, we propose a novel hybrid model in which the interpretability of the Autoregressive model (AR) and the predictive power of the long short-term memory neural networks (LSTM) join forces. The proposed hybrid model is formalized as a neural network with an architecture that connects two composing model blocks, of which the relative contribution is decided data-adaptively in the training procedure. We demonstrate the favorable performance of the hybrid model over its two component models as well as other popular predictive models through comprehensive numerical studies on two data sources under multiple evaluation metrics. Specifically, in county-level data of 8 California counties, our hybrid model achieves 4.173% MAPE on average, outperforming the composing AR (5.629%) and LSTM (4.934%). In country-level datasets, our hybrid model outperforms the widely-used predictive models - AR, LSTM, SVM, Gradient Boosting, and Random Forest - in predicting COVID-19 cases in 8 countries around the world. In addition, we illustrate the interpretability of our proposed hybrid model, a key feature not shared by most black-box predictive models for COVID-19 cases. Our study provides a new and promising direction for building effective and interpretable data-driven models, which could have significant implications for public health policy making and control of the current and potential future pandemics

    Bridge the Gap Between CV and NLP! An Optimization-based Textual Adversarial Attack Framework

    Full text link
    Despite recent success on various tasks, deep learning techniques still perform poorly on adversarial examples with small perturbations. While optimization-based methods for adversarial attacks are well-explored in the field of computer vision, it is impractical to directly apply them in natural language processing due to the discrete nature of the text. To address the problem, we propose a unified framework to extend the existing optimization-based adversarial attack methods in the vision domain to craft textual adversarial samples. In this framework, continuously optimized perturbations are added to the embedding layer and amplified in the forward propagation process. Then the final perturbed latent representations are decoded with a masked language model head to obtain potential adversarial samples. In this paper, we instantiate our framework with an attack algorithm named Textual Projected Gradient Descent (T-PGD). We find our algorithm effective even using proxy gradient information. Therefore, we perform the more challenging transfer black-box attack and conduct comprehensive experiments to evaluate our attack algorithm with several models on three benchmark datasets. Experimental results demonstrate that our method achieves an overall better performance and produces more fluent and grammatical adversarial samples compared to strong baseline methods. All the code and data will be made public.Comment: Codes are available at: https://github.com/Phantivia/T-PG

    Parallel Jacobian-free Newton Krylov discrete ordinates method for pin-by-pin neutron transport models

    Get PDF
    A parallel Jacobian-Free Newton Krylov discrete ordinates method (comePSn_JFNK) is proposed to solve the multi-dimensional multi-group pin-by-pin neutron transport models, which makes full use of the good efficiency and parallel performance of the JFNK framework and the high accuracy of the Sn method for the large-scale models. In this paper, the k-eigenvalue and the scalar fluxes (rather than the angular fluxes) are chosen as the global solution variables of the parallel JFNK method, and the corresponding residual functions are evaluated by the Koch–Baker–Alcouffe (KBA) algorithm with the spatial domain decomposition in the parallel Sn framework. Unlike the original Sn iterative strategy, only a “flattened” power iterative process which includes a single outer iteration without nested inner iterations is required for the JFNK strategy. Finally, the comePSn_JFNK code is developed in C++ language and, the numerical solutions of the 2-D/3-D KAIST-3A benchmark problems and the 2-D/3-D full-core MOX/UOX pin-by-pin models with different control rod distribution show that comePSn_JFNK method can obtain significant efficiency advantage compared with the original power iteration method (comePSn) for the parallel simulation of the large-scale complicated pin-by-pin models

    One-shot Implicit Animatable Avatars with Model-based Priors

    Full text link
    Existing neural rendering methods for creating human avatars typically either require dense input signals such as video or multi-view images, or leverage a learned prior from large-scale specific 3D human datasets such that reconstruction can be performed with sparse-view inputs. Most of these methods fail to achieve realistic reconstruction when only a single image is available. To enable the data-efficient creation of realistic animatable 3D humans, we propose ELICIT, a novel method for learning human-specific neural radiance fields from a single image. Inspired by the fact that humans can effortlessly estimate the body geometry and imagine full-body clothing from a single image, we leverage two priors in ELICIT: 3D geometry prior and visual semantic prior. Specifically, ELICIT utilizes the 3D body shape geometry prior from a skinned vertex-based template model (i.e., SMPL) and implements the visual clothing semantic prior with the CLIP-based pretrained models. Both priors are used to jointly guide the optimization for creating plausible content in the invisible areas. Taking advantage of the CLIP models, ELICIT can use text descriptions to generate text-conditioned unseen regions. In order to further improve visual details, we propose a segmentation-based sampling strategy that locally refines different parts of the avatar. Comprehensive evaluations on multiple popular benchmarks, including ZJU-MoCAP, Human3.6M, and DeepFashion, show that ELICIT has outperformed strong baseline methods of avatar creation when only a single image is available. The code is public for research purposes at https://huangyangyi.github.io/ELICIT/.Comment: To appear at ICCV 2023. Project website: https://huangyangyi.github.io/ELICIT

    Activation of Interleukin-1β Release by the Classical Swine Fever Virus Is Dependent on the NLRP3 Inflammasome, Which Affects Virus Growth in Monocytes

    Get PDF
    Classical swine fever virus (CSFV) is a classic Flavivirus that causes the acute, febrile, and highly contagious disease known as classical swine fever (CSF). Inflammasomes are molecular platforms that trigger the maturation of proinflammatory cytokines to engage innate immune defenses that are induced upon cellular infection or stress. However, the relationship between the inflammasome and CSFV infection has not been thoroughly characterized. To understand the function of the inflammasome response to CSFV infection, we infected porcine peripheral blood monocytes (PBMCs) with CSFV. Our results indicated that CSFV infection induced both the generation of pro-interleukin-1β (pro-IL-1β) and its processing in monocytes, leading to the maturation and secretion of IL-1β through the activation of caspase 1. Moreover, CSFV infection in PBMCs induced the production and cleavage of gasdermin D (GSDMD), which is an inducer of pyroptosis. Additional studies showed that CSFV-induced IL-1β secretion was mediated by NLRP3 and that CSFV infection could sufficiently activate the assembly of the NLRP3 inflammasome in monocytes. These results revealed that CSFV infection inhibited the expression of NLRP3, and knockdown of NLRP3 enhanced the replication of CSFV. In conclusion, these findings demonstrate that the NLRP3 inflammasome plays an important role in the innate immune response to CSFV infection

    Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is a worldwide malignant liver tumor with high incidence in China. Subchromosomal amplifications and deletions accounted for major genomic alterations occurred in HCC. Digital karyotyping was an effective method for analyzing genome-wide chromosomal aberrations at high resolution.</p> <p>Methods</p> <p>A digital karyotyping library of HCC was constructed and 454 Genome Sequencer FLX System (Roche) was applied in large scale sequencing of the library. Digital Karyotyping Data Viewer software was used to analyze genomic amplifications and deletions. Genomic amplifications of genes detected by digital karyotyping were examined by real-time quantitative PCR. The mRNA expression level of these genes in tumorous and paired nontumorous tissues was also detected by real-time quantitative RT-PCR.</p> <p>Results</p> <p>A total of 821,252 genomic tags were obtained from the digital karyotyping library of HCC, with 529,162 tags (64%) mapped to unique loci of human genome. Multiple subchromosomal amplifications and deletions were detected through analyzing the digital karyotyping data, among which the amplification of 7q21.3 drew our special attention. Validation of genes harbored within amplicons at 7q21.3 locus revealed that genomic amplification of SGCE, PEG10, DYNC1I1 and SLC25A13 occurred in 11 (21%), 11 (21%), 11 (21%) and 23 (44%) of the 52 HCC samples respectively. Furthermore, the mRNA expression level of SGCE, PEG10 and DYNC1I1 were significantly up-regulated in tumorous liver tissues compared with corresponding nontumorous counterparts.</p> <p>Conclusions</p> <p>Our results indicated that subchromosomal region of 7q21.3 was amplified in HCC, and SGCE, PEG10 and DYNC1I1 were probable protooncogenes located within the 7q21.3 locus.</p

    Opportunities and challenges of China’s inquiry-based education reform in middle and high schools: Perspectives of science teachers and teacher educators

    Full text link
    Consistent with international trends, an emergent interest in inquiry-based science teaching and learning in K-12 schools is also occurring in China. This study investigates the possibilities for and the barriers to enactment of inquiry-based science education in Chinese schools. Altogether 220 Chinese science teachers, science teacher educators and researchers (primarily from the field of chemistry education) participated in this study in August 2001. Participants represented 13 cities and provinces in China. We administered two questionnaires, one preceding and one following a 3-hour presentation by a US science educator and researcher about inquiry-based teaching and learning theories and practices. In each of three sites in which the study was conducted (Shanghai, Guangzhou and Beijing), questionnaires were administered, and four representative participants were interviewed. Our coding and analysis of quantifiable questionnaire responses (using a Likert scale), of open-ended responses, and of interview transcripts revealed enthusiastic interest in incorporating inquiry-based teaching and learning approaches in Chinese schools. However, Chinese educators face several challenges: (a) the national college entrance exam needs to align with the goals of inquiry-based teaching; (b) systemic reform needs to happen in order for inquiry-based science to be beneficial to students, including a change in the curriculum, curriculum materials, relevant resources, and teacher professional development; (c) class size needs to be reduced; and (d) an equitable distribution of resources in urban and rural schools needs to occur.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42933/1/10763_2005_Article_1517.pd
    • …
    corecore