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A parallel Jacobian-Free Newton Krylov discrete ordinates method (comePSn_

JFNK) is proposed to solve the multi-dimensional multi-group pin-by-pin

neutron transport models, which makes full use of the good efficiency and

parallel performance of the JFNK framework and the high accuracy of the Sn

method for the large-scale models. In this paper, the k-eigenvalue and the

scalar fluxes (rather than the angular fluxes) are chosen as the global solution

variables of the parallel JFNKmethod, and the corresponding residual functions

are evaluated by the Koch–Baker–Alcouffe (KBA) algorithm with the spatial

domain decomposition in the parallel Sn framework. Unlike the original Sn

iterative strategy, only a “flattened” power iterative process which includes a

single outer iteration without nested inner iterations is required for the JFNK

strategy. Finally, the comePSn_JFNK code is developed in C++ language and,

the numerical solutions of the 2-D/3-D KAIST-3A benchmark problems and the

2-D/3-D full-core MOX/UOX pin-by-pin models with different control rod

distribution show that comePSn_JFNKmethod can obtain significant efficiency

advantage compared with the original power iteration method (comePSn) for

the parallel simulation of the large-scale complicated pin-by-pin models.
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1 Introduction

The efficient parallel algorithms and the acceleration methods of discrete ordinates

methods (Sn) (Carlson, 1953) for multi-dimensional large-scale neutron transport models

are research hotspots in the reactor simulation field. In the past few decades, many parallel

Sn neutron transport codes are developed by using overloading spatial domain

decomposition (Bailey and Falgout, 2009) or Koch–Baker–Alcouffe (KBA) algorithms

(Baker and Koch, 1998), including DENOVO (Evans et al., 2010), PARTISN (Alcouffe

et al., 2005), NECP-hydra (Xu et al., 2018), ARES (Zhang et al., 2017) and so on. To
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accelerate the calculation of the original Sn iterative strategies

based on the power iteration methods (PI), a batch of numerical

methods can be employed, such as Wielandt shifts methods,

Chebyshev acceleration methods, coarse mesh finite difference

methods, diffusion synthetic acceleration method. In this paper,

the parallel Jacobian-free Newton-Krylov (JFNK) (Knoll and

Keyes, 2004) methods are adopted.

The JFNK methods have good computational efficiency

due to the fast and robust convergence, which are widely used

to solve the atmospheric convection problem (Hossain and

Alam, 2012), the sea ice simulation (Yaremchu and Panteleev,

2022), two-phase flow calculation (Hajizadeh et al., 2018), the

neutron diffusion/transport models (Gill, 2009; Knoll et al.,

2011), thermal hydraulics simulation (Esmaili et al., 2020)

and multi-physics coupled problems (Walker et al., 2019).

Meanwhile, some popular multi-physics coupled

environments (or platforms), such as MOOSE (Gaston

et al., 2009), LIME (Pawlowski et al., 2011) and VERA

(Turner et al., 2016), employ the JFNK framework to solve

the complicated reactor coupled systems. Recently, we have

also developed an efficient JFNK framework based on coarse

mesh finite difference and nodal expansion method in the

COupling Multiphysics Environment (COME) to solve the

steady/transient neutronics and neutronics-thermal

hydraulic coupled problems (Zhou, 2022a; Zhou, 2022b;

Zhou et al., 2022; Zhou, 2023). To take advantages of the

good efficiency and parallel performance of the JFNK

framework in COME, in this paper, the parallel JFNK

method is combined with the parallel Sn method to solve

the multi-dimensional large-scale neutron transport models.

Therefore, a parallel Jacobian-free Newton Krylov discrete

ordinates method (comePSn_JFNK) is proposed to solve the

multi-dimensional multi-group pin-by-pin neutron transport

k-eigenvalue problems, which makes full use of the fast and

robust convergence of the parallel JFNK framework and the

high accuracy of the Sn method based on the KBA algorithm.

The key to implement the JFNK framework into the Sn

algorithm is to choose the k-eigenvalue and the scalar

fluxes (rather than the angular fluxes) as the global

solution variables for parallel JFNK, which are the minimal

subset of the non-linear system. The corresponding residual

functions are directly constructed from the neutron transport

equations and evaluated based on the parallel Sn transport

sweeping process by using a “flattened” power iterative

process including a single outer iterative step without

nested inner iterations.

This paper is organized as follows. The detailed theories of

the comePSn_JFNKmethod are presented in Section 2, including

the parallel JFNK method, the parallel Sn method, the residual

function evaluation and the solution strategies. In Section 3, the

numerical results for the 2-D/3-D full-core pin-by-pin models

are analyzed to test the accuracy and efficiency of the comePSn_

JFNK method. The conclusions are given in Section 4.

2 Methodologies of the comePSn_
JFNK method

2.1 Parallel JFNK

JFNK method is one of the inexact Newton-Krylov methods,

which are the combinations of Newton’s methods for solving

non-linear equations, Krylov subspace methods for solving the

linear Newton correction equations, and “Jacobian-free”

technology for approximately solving Jacobian-vector product

(Knoll and Keyes, 2004). The non-linear equations can be

generally written by F(x) � 0. The Newton iteration step

(where n is the index) is to solve the discrete equations as

Ja x n( )( )δx n( ) � −F x n( )( ),
x n+1( ) � x n( ) + δx n( ),

(1)

where x is the vector of global solution variables,F represents the non-

linear discrete system, and Ja represents the Jacobian matrix. For

Krylovmethods, the Jacobianmatrix needs not to be formed explicitly

because the product of Jacobian matrix and a vector (v) rather than

the Jacobian matrix is required. Using the first-order finite difference

approximation, the Jacobian-vector product can be solved by

Ja x n( )( )v � F x n( ) + εv( ) − F x n( )( )
ε

(2)

where ε is a perturbation parameter which can be specified by x(n)

and v.

For the parallel JFNK method, only the residual functions,

the dot products and the norms of vectors are considered to be

evaluated synchronously in multiple processors, which are easily

developed in the parallel framework. In addition, residual

functions are evaluated from the parallel Sn method based on

KBA sweeping algorithm as shown in the following sections.

2.2 Evaluation of residual functions from
parallel Sn

The multi-group neutron Boltzmann transport equations for

the k-eigenvalue problem can be written as

Ω̂n · ∇ψg,n �r( ) + Σt,g �r( )ψg,n �r( ) � ∑G
g′�1

Σs,g′→g �r( )ϕg′ �r( )

+ χg
keff

∑G
g′�0

]Σf ,g′ �r( )ϕg′ �r( ), (3)

ϕg �r( ) � ∑N
n�1

ωnψg ,n �r( ), (4)

where ψg,n( �r) = Angular neutron flux, ϕg( �r) = Scalar neutron flux,

keff = Effective multiplication factor (k-eigenvalue), Σt,g =

Macroscopic total cross section, Σs,g′→g = Macroscopic scattering

cross section, χg = Fission spectrum, ]Σf ,g =Macroscopic production

cross section, g = Energy group index and G = Total number of
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energy group, n = Discrete angle index and N = Total number of

discrete angles, �r = Spatial position vector and Ω̂n = Unit direction

vector for discrete angle n, ωn = Quadrature weight for discrete

angle n.

Eq. 3 can be written in operator notation form as

Lψ � MSϕ + 1
keff

Mχfϕ, (5)

where ψ and ϕ are vectors which contain the angular fluxes and

scalar fluxes, respectively. L denotes the sum of the streaming

operator and removal operator.M is the scalar-to-discrete operator

and D is the discrete-to-scalar operator; in the case of isotropic

scattering, D represents the action which integrates the angular

fluxes to the scalar fluxes as shown is Eq. 4, i.e., ϕ � Dψ. S is the

matrix of group-to-group scattering cross sections, f is the matrix

of production cross sections and χ is the fission spectrum matrix.

The parallel transport sweeping based on the KBA algorithm with

the spatial domain decomposition (Baker, 2017) is employed to

directly inverse L into L−1, which marches across the spatial

domain cells in the direction of neutron travel.

Multiplied by DL−1, Eq. 5 becomes

ϕ � DL−1MSϕ + 1
keff

DL−1Mχfϕ

0 I −DL−1MS( )ϕ � 1
keff

DL−1Mχfϕ.
(6)

FIGURE 1
Iterative strategies and flowchart for the comePSn_JFNK and comePSn methods.
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It is an eigenvalue problem, whose solution is to get an

eigenpair vector (ϕT, keff )T. Traditionally, it can be solved by

power iteration method (PI) which includes two-level nested

iterations. The outer iteration can be written as

ϕ l+1( ) � I −DL−1MS( )−1 1

keff
l( ) DL−1Mχfϕ l( ), (7)

keff
l+1( ) � ĉ||fϕ l+1( )||1, (8)

where l is the outer iterative index, ‖ · ‖1 denotes the L-1 norm. ĉ

is a fixed value during iteration and it can be assigned form the

iterative initial value as

ĉ ≡
keff

0( )

||fϕ 0( )||1. (9)

For each outer iteration, Eq. 7 is equivalent to a fixed source

problem, which can generally be calculated using fixed point

iteration method (which is the inner iteration) as

ϕ m+1,l( ) � DL−1M Sϕ m,l( ) + 1

keff
l( ) χfϕ

l( )( ), (10)

where m is the inner iterative index. In this paper, this power

iterative strategy is called comePSn method. To efficiently get the

simultaneous solution of the non-linear system using the parallel

JFNKmethod, the k-eigenvalue and the scalar fluxes (rather than

the angular fluxes) are finally chosen as the global solution

variables, and x � [ϕT, keff ]T.
Meanwhile, x is also the minimal subset of all the variables for

the discrete non-linear system based on the parallel Sn method,

which indicates that the JFNK solution has the least number of global

solution variables and can obtain good numerical efficiency.

Then, according to the PI strategy for the parallel Sn method

as shown in Eq. 7 and Eq. 8, the corresponding residual functions

for the parallel JFNK method can be easily expressed as

F x( ) ≡ Fϕ x( )
Fk x( )[ ] �

ϕ − I −DL−1MS( )−1 1
keff

DL−1Mχfϕ

keff − ĉ||f I −DL−1MS( )−1 1
keff

DL−1Mχfϕ||1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(11)

where Fϕ(x) and Fk(x) denotes the residual functions for ϕ and

keff , respectively. However, as mentioned above, the solution of

the (I −DL−1MS)−1 operation needs nested inner iterations with

a certain amount of transport sweeping steps (multiple

calculation of L−1), which can lead to significantly expensive

cost when evaluating residual functions. In fact, only one

transport sweeping step is enough for the evaluation of the

residual functions for JFNK. As a result, in this paper, the

residual functions are constructed according to Eq. 6 and 8 as

Fϕ x( ) � ϕ −DL−1MSϕ − 1
keff

DL−1Mχfϕ

� ϕ −DL−1M S + 1
keff

χf( )ϕ, (12)

Fk x( ) � keff − ĉ||fDL−1M S + 1
keff

χf( )ϕ||1, (13)

where the evaluation is equivalent to a “flattened” power iterative

process (Gill, 2009) including a single outer iteration without

nested inner iterations as shown in Eq. 10. In this paper, the

combined strategy of the parallel JFNK method and the parallel

Sn method is called comePSn_JFNK method.

2.3 Parallel code design for evaluation of
residual functions

In this paper, the comePSn and comePSn_JFNK codes are

parallelly designed on spatial domain decomposition with the

Message Passing Interface (MPI) standard. For the comePSn_

JFNK code, the message communication between MPI ranks is

mainly required for the evaluation of the residual functions, the

dot products and the norms. The parallel dot products and

norms of vectors can be easily calculated by using the MPI_

Allreduce function. And the evaluation of residual functions

employs the KBA algorithm, which can directly calculate the

inversion of L in the parallel Sn framework.

KBA is constructed on the (N-1)-dimensional spatial domain

decomposition for N-dimensional models. For 3-D rectangular

coordinate system, the spatial grid is divided into domains on the

XY layout of CPU cores (or MPI ranks). Each domain is further

decomposed into computational chunks, which are solved in the

FIGURE 2
Radial geometry of the KAIST-3A benchmark problem.
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“wavefront” ordering. Each computational chunk, in a single

octant with N/8 discrete angles for a single energy group, is

solved after receiving the incoming angular fluxes from the

upstream chunks (or from the boundary conditions), and then

the outer angular fluxes are sent to the downstream chunks if

required. The “simultaneous in angle, successive in quadrants”

pipelining method described in the reference (Baker and Koch,

1998) are chosen in this paper. In addition, to reduce the idle

time, the sweeps start at all the four corners of the spatial grid at

the same time (Bailey and Falgout, 2009).

As mentioned above, the KBA transport sweeping process can

be easily applied to evaluate the residual functions for the parallel

JFNK framework. In this work, the evaluation of the residual

functions is a three-step process. 1) Map x to ϕ and keff in each

MPI rank. 2) Calculate the new scalar fluxes ~ϕ by using the KBA

algorithmwhere ~ϕ � DL−1M(S + 1/kef fχf)ϕ, and then get the new
k-eigenvalue as ~keff � ĉ||f~ϕ||1. 3) Calculate the residual functions
F(x) according to Eqs 12, 13, where F x( ) � ϕ − ~ϕ

keff − ~keff
[ ].

2.4 Solution strategy

Based on the above methodologies, the parallel comePSn_

JFNK and comePSn codes are respectively developed in the

unified COME using C++ language to study the numerical

accuracy, the efficiency and the parallel performance for the

3-D/2-D pin-by-pin neutron transport models. The iterative

strategies and the flowchart are shown in Figure 1. The good

initial guess x(0) of the comePSn_JFNK code comes from the

solution after 5 power iterative steps. The CPU time and iterative

properties of the comePSn code after 5 iterative steps are also

compared with those of the comePSn_JFNK code. In addition,

the number of inner steps is fixed as one per outer step for the

comePSn code, which ensures that a single power iterative step

for the comePSn code is equivalent to one calling calculation of

residual functions for the comePSn_JFNK code. Then, the

relative convergence criterion for both comePSn_JFNK and

comePSn codes is

F x n( )( )���� ����2
F x 0( )( )‖ ‖2 < 10−6, (14)

FIGURE 3
Fuel assembly configuration of the KAIST-3A benchmark problem: (A) UOX fuel assembly and (B) MOX fuel assembly.

TABLE 1 Results of k-eigenvalues on different mesh sizes per pin for 2-D
KAIST-3A benchmark problems.

Case Method 1 × 1 2 × 2 4 × 4 32 × 32

ARO
comePSn 1.12886 1.13086 1.13083 1.13088

comePSn_JFNK 1.12886 1.13086 1.13083 1.13088

ARI
comePSn 0.96706 0.97401 0.97421 0.97452

comePSn_JFNK 0.96706 0.97401 0.97421 0.97452
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FIGURE 4
Relative error (%) of power density between comePSn_JFNK and comePSn codes on different mesh sizes per pin for 2-D KAIST-3A benchmark
problems: (A) 1 × 1 for ARO, (B) 2 × 2 for ARO, (C) 4 × 4 for ARO, (D) 32 × 32 for ARO, (E) 1 × 1 for ARI, (F) 2 × 2 for ARI, (G) 4 × 4 for ARI and (H) 32 × 32
for ARI.

FIGURE 5
Relative error (%) of pin-wise power density on different mesh sizes per pin compared with those on 32 × 32 meshes per pin for 2-D KAIST-3A
benchmark problems using the comePSn_JFNK code: (A) 1 × 1 for ARO, (B) 2 × 2 for ARO, (C) 4 × 4 for ARO, (D) 1 × 1 for ARI, (E) 2 × 2 for ARI and (F)
4 × 4 for ARI.
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where ‖ · ‖2 denotes the L-2 norm and F(x(0)) denotes the

residuals of the iterative initial value. In each Newton step (n),

the adaptive convergence criterion with the Eisenstat-Walker

forcing term η(n) (Eisenstat and Walker, 1996) is

Ja x n( )( )δx n( ) + F x n( )( )‖2 < η n( )���� ����F x n( )( )‖2, (15)

η n( ) � 0.1
F x n( )( )
F x n−1( )( )( )2.0

. (16)

The restarted GMRES (Generalized Minimal REsidual) method

(Saad and Schultz, 1986) is adopted to solve Eq. 15 and themaximum

Krylov subspace dimension is set to 20. At last, the global convergent

TABLE 2 Comparison of the computational cost for 2-D KAIST-3A benchmark problems.

Case Meshes
per pin

Code Newton/Power
steps

Krylov iterative
number

Number of calling
residuals

CPU
time (s)

Speed
up

ARO

1 × 1 comePSn 1,382 — — 35.26 —

comePSn_JFNK 6 155 162 4.28 8.24

2 × 2 comePSn 1,410 — — 140.67 —

comePSn_JFNK 6 176 183 19.28 7.30

4 × 4 comePSn 1,411 — — 568.94 —

comePSn_JFNK 6 177 184 78.13 7.28

32 × 32* comePSn 1,412 — — 1,296.44 —

comePSn_JFNK 6 177 184 211.04 6.14

ARI

1 × 1 comePSn 1,580 — — 39.96 —

comePSn_JFNK 6 156 163 4.41 9.06

2 × 2 comePSn 1,571 — — 156.93 —

comePSn_JFNK 5 143 149 15.59 10.07

4 × 4 comePSn 1,570 — — 628.50 —

comePSn_JFNK 5 143 149 63.71 9.86

32 × 32* comePSn 1,566 — — 1,404.90 —

comePSn_JFNK 5 146 151 175.32 8.01

*the simulation on 32 × 32 meshes per pin is solved using 32 CPU, cores and the others are on one CPU, core.

FIGURE 6
Relative error (%) of radial average power density between comePSn_JFNK and comePSn codes for 3-D KAIST-3A benchmark problems: (A)
ARO and (B) ARI.
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backtracking algorithm (Eisenstat and Walker, 1994) is employed to

ensure the global convergence of come_PSn_JFNK.

3 Numerical results and analysis

In this section, we apply the comePSn_JFNK and comePSn

codes to two series of complicated multi-dimensional pin-by-pin

neutron transport models. First, the popular 2-D/3-D KAIST-3A

benchmark problems with Gd burnable absorbers are simulated to

analyze the numerical accuracy, the parallel performance and the

computational efficiency of the comePSn_JFNK and comePSn

codes. Then, the more complicated 2-D/3-D full-core MOX/

UOX pin-by-pin models with different insertion forms of the

control rods are further employed to test the high numerical

efficiency of the comePSn_JFNK code compared with the

FIGURE 7
Radial average power density and 3-D power density distribution for 3-D KAIST-3A benchmark problems using the comePSn_JFNK code: (A)
radial power density for ARO, (B) 3-D power density for ARO, (C) radial power density for ARI and (D) 3-D power density for ARI.

TABLE 3 Comparison of the computational cost for 3-D KAIST-3A benchmark problems (100 CPU cores).

Case Code Newton/Power
steps

Krylov iterative number Number of calling residuals CPU time (s) Speed
up

ARO
comePSn 7120 — — 24337 —

comePSn_JFNK 7 494 502 1961 12.41

ARI
comePSn 6,914 — — 24056 —

comePSn_JFNK 6 408 414 1,643 14.64
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comePSn code in an order of 1000 CPU cores on the computer

clusters with Hygon C86 7185 32-core processors. In all of our

numerical simulations, the S8 Carlson quadrature set (Longoni,

2004) is adopted to discretize the angular direction space.

3.1 KAIST-3A benchmark problem

KAIST-3A benchmark problems are published by KAIST

Nuclear Reactor Analysis and Particle Transport laboratory

(Cho, 2000), whose model is a simplified PWR core. The

quarter symmetric radial geometry is illustrated in Figure 2.

The core consists of two types of fuel assemblies, Uranium (UOX,

including UOX-1 with 2.0% enrichment and UOX-2 with 3.3%

enrichment) and Plutonium (MOX), which are surrounded by

the baffle and reflector. Each fuel assembly follows a 17 ×

17 lattice design of 21.42 cm width with a 1.26 cm pin pitch,

which includes 264 fuel rods (or burnable absorber rods),

24 guide tubes (or control rods inserted) and one instrument

guide tube as shown in Figure 3. There are two cases: all rods out

(ARO) and all rods in (ARI), based on the configurations with or

without the control rods (CR) inserted into the four UOX-2 fuel

assemblies. Seven-group macroscopic cross sections are provided

in the benchmark report, including UO2 fuel, MOX fuel, guide

tube, BA (Burnable absorber) rod, control rod, baffle and

reflector.

At first, the 2-D quarter symmetric models are simulated by

comePSn_JFNK and comePSn codes. The pin cell is divided into

1 × 1, 2 × 2, 4 × 4 and 32 × 32 rectangular meshes, respectively.

Table 1 and Figure 4 respectively show the comparison of the

k-eigenvalue and the relative errors (%) of power density for

ARO and ARI with different mesh sizes per pin using comePSn_

JFNK and comePSn codes. It can be seen that there is no obvious

difference between the results from the two codes. To further

analyze the accuracy of the two codes with different mesh sizes

per pin, the relative errors (%) of pin-wise power density on 1 × 1,

2 × 2 and 4 × 4 meshes per pin are presented in Figure 5

compared with the results on 32 × 32 meshes per pin. For 1 ×

1 mesh per pin, the maximum value of the relative errors reaches

12% for ARO and 18% for ARI, and the errors of the

k-eigenvalues are about 200 pcm (for ARO) and 750 pcm (for

FIGURE 8
Parallel efficiency for 3-D KAIST-3A ARO case of the
comePSn_JFNK code.

FIGURE 9
Fuel assembly configuration of the full-core MOX/UOX pin-by-pin models: (A) UOX fuel assembly and (B) MOX fuel assembly.
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ARI). While for 2 × 2 and 4 × 4 meshes per pin, the errors of the

power density and the k-eigenvalues are respectively less than 2%

and 50 pcm, and it indicates that the solution on 2 × 2meshes per

pin can obtain acceptable numerical accuracy.

To further analyze the numerical efficiency of comePSn_

JFNK and comePSn codes, the CPU times and iteration numbers

are presented in Table 2. It should be noted that the CPU times

do not include the cost of the initialization, reading the input files

and writing the output files. The results indicate that the different

mesh sizes per pin make no obvious difference on the

convergence rate for both comePSn_JFNK and comePSn

codes. The computational efficiency of the comePSn_JFNK

code is about 6–8 times as much as the comePSn code for

ARO and about 8–10 for ARI.

FIGURE 10
Radial core configuration of the full-core MOX/UOX pin-by-pin models: (A) model A, (B) model B, (C) model C and (D) model D.

TABLE 4 Results of k-eigenvalues for 2-D full-core MOX/UOX pin-by-pin
models A–D.

Model Code Eigenvalue keff Reference

A
comePSn 1.24449 1.24322

comePSn_JFNK 1.24449

B
comePSn 1.22596 1.22457

comePSn_JFNK 1.22596

C
comePSn 1.23055 1.22921

comePSn_JFNK 1.23055

D
comePSn 1.22812 1.22674

comePSn_JFNK 1.22812
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Then the KAIST-3A 2-D quarter symmetric models are

extend to 3-D full-core models with the same radial

configuration, and axial reflectors are set at the top/

bottom of the core. The active fuel length is 365.76 cm

and the width of axial reactors is 21.42 cm. The control

rods can be inserted from the top of the upper reflector to

the bottom of the active fuel region in the UOX-2 (CR)

assemblies. ARO and ARI cases are still simulated by

comePSn_JFNK and comePSn codes.

The 3-D full-core model is divided into 340 × 340 ×

340 meshes. Specifically, one pin cell is divided into 2 ×

2 meshes in the radial direction; in the axial direction, the

active region is divided into 300 meshes and the top/bottom

reflectors are respectively divided into 20 meshes. Both

comePSn_JFNK and comePSn codes solve the problems

using 100 CPU cores. Figure 6 presents the relative errors

(%) of radial average power density between the two codes

and Figure 7 shows the radial average power density and 3-D

power density distribution in the active regions calculated the

comePSn_JFNK code. The numerical results of radial power

density and the k-eigenvalues from the two codes also agree

well with each other. The k-eigenvalues are respectively

1.12612 for ARO and 0.97063 for ARI.

To further analyze the efficiency of comePSn_JFNK and

comePSn codes for 3-D models, the iterative properties and

CPU times (on 100 CPU cores) are listed in Table 3. Compared

with the comePSn code, the speedups of the comePSn_

JFNK code are 12.41 for ARO and 14.64 for ARI. It is

worth noting that the acceleration rates of the comePSn_

JFNK code for 3-D models are higher than those for 2-D

models, which shows the advantage of numerical efficiency of

the comePSn_JFNK code for the complicated 3-D neutron

transport problems.

In addition, the parallel efficiencies of the comePSn_

JFNK code for the 3-D KAIST-3A ARO case using 4, 16,

100 and 400 CPU cores are shown in Figure 8. The “Solving”

curve means the parallel efficiency of the total CPU

time and the “Sweeping” curve indicates the parallel

FIGURE 11
Power density distribution using the comePSn_JFNK code for 2-D full-core MOX/UOX pin-by-pin models: (A)model A, (B)model B, (C)model
C and (D) model D.
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efficiency of KBA sweeping. The efficiencies of “Solving”

and “Sweeping” using 400 CPU cores are respectively

about 63% and 68%, which can be further improved

by optimizing the parallel performance of the

Krylov subspace methods and the strategies of the KBA

algorithm.

FIGURE 12
Relative errors (%) of radial average power density between comePSn_JFNK and comePSn codes for 2-D full-core MOX/UOX pin-by-pin
models: (A) model A, (B) model B, (C) model C and (D) model D.

TABLE 5 Comparison of the computational cost for 2-D Full-core MOX/UOX pin-by-pin models A–D.

Model Code Newton/Power
steps

Krylov iterative
number

Number of calling
residuals

CPU time (s) Speed
up

A
comePSn 7093 — — 1956 —

comePSn_JFNK 7 427 434 127 15.40

B
comePSn 5,551 — — 1,543 —

comePSn_JFNK 5 308 313 91.6 16.84

C
comePSn 19582 — — 5,084 —

comePSn_JFNK 7 571 578 170 29.90

D
comePSn 27041 — — 7743 —

comePSn_JFNK 10 885 895 261 29.67

Frontiers in Energy Research frontiersin.org12

Zhang and Zhou 10.3389/fenrg.2022.1101050

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1101050


FIGURE 13
Radial average power and 3-D power density distribution for 3-D Full-core MOX/UOX pin-by-pin models: (A) radial power density for model A,
(B) 3-D power density for model A, (C) radial power density for model B, (D) 3-D power density for model B, (E) radial power density for model C, (F)
3-D power density for model C, (G) radial power density for model D and (H) 3-D power density for model D.
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3.2 Full-core MOX/UOX pin-by-pin
models

A series of 3-D/2-D PWR full-core MOX/UOX pin-by-

pin models with different insertion positions of control rods

are simulated to further study the numerical properties of

comePSn_JFNK and comePSn codes. The reactor core also

consists of UOX and MOX fuel assemblies surrounded by

reflector. As shown in Figure 9, each fuel assembly is

21.42 cm wide and is made up of 17 × 17 lattice with a

1.26 cm pin pitch, which includes 264 fuel pins, 24 guide

tubes (or control rods inserted) and one instrument tube for

fission chamber. The UOX and MOX assemblies are

distributed in a checker-board configuration and four core

models (A, B, C and D) are designed with different

configurations of the UOX assemblies with control rods

inserted (UOA) as illustrated in Figure 10. The active fuel

length is 365.76 cm and there are 21.42 cm high axial

reflectors at the top/bottom of the core just as the 3-D

KAIST-3A models. It should be noted that the control

rods are inserted form the top of the upper reflector to

the bottom of the active fuel regions in the models B, C

and D; and the control rods are still in the upper reflector if

withdrawn in the models A, C and D. In this paper both 2-D

and 3-D models are simulated by comePSn_JFNK and

comePSn codes. The seven-group cross sections for pin

cells are chosen form the C5G7 benchmark report (Smith

et al., 2005). The pin cells are divided into 2 × 2 rectangular

meshes in the radial direction; in the axial direction, the

active fuel region is divided into 580 meshes and the top/

bottom reflectors are respectively divided into 30 meshes.

Table 4 shows the results of the k-eigenvalues from

comePSn_JFNK and comePSn codes and the reference

solution is from the paper (Zhou, 2022a). It can be observed

that the errors of k-eigenvalues from the two codes are about

150 pcm compared with the reference. Figure 11 shows the

power density distribution from the comePSn_JFNK code and

Figure 12 shows the corresponding relative errors (%)

compared with the comePSn code. It can be observed that

the power density distribution from the two codes agree well

with each other, and even in the model B where the control rods

are all inserted in, the maximum of the errors is less than

0.002%.

To analyze the numerical efficiency, Table 5 presents the

comparation of the computational cost for the 2-D models from

comePSn_JFNK and comePSn codes (using 1 core). Compared

with the comePSn code, the speedups of the comePSn_JFNK

code are respectively 15.40, 16.84, 29.90, and 29.67 for models

A–D, which indicates that the acceleration rate of the comePSn_

JFNK code for the asymmetric models C and D is higher than

that for the symmetric models A and B. In addition, there is

obvious difference of the iterative steps between the four models

from the comePSn code, which range from 7093 to 27041. While

the comePSn_JFNK code takes similar non-linear iterative steps

(range from 5 to 10) due to the robust convergence of the JFNK

methods.

To further test the computational properties of the

comePSn_JFNK code for 3-D models, the radial average

power density and the 3-D power density distribution

calculated by the comePSn_JFNK code using 1024 CPU cores

are presented in Figure 13, and the k-eigenvalues and the

computational cost compared with the comePSn code is

shown in Table 6. It can be seen that the acceleration rate of

the comePSn_JFNK code are respectively 20.48, 22.57, 24.93 and

26.45 for models A– D, which indicates that the comePSn_JFNK

code still has significant efficiency advantage for the complicated

3-D full-core pin-by-pin models with different control rod

distributions.

TABLE 6 Comparison of the k-eigenvalues and the computational cost for 3-D full-core MOX/UOX pin-by-pin models (1024 CPU cores).

Model Code k-eigenvalue Newton/Power
steps

Krylov iterative
number

Number of calling
residuals

CPU
time (s)

Speed
up

A
comePSn 1.24080 9,947 — — 27937 —

comePSn_JFNK 1.24080 6 426 432 1,364 20.48

B
comePSn 1.22293 9,942 — — 28616 —

comePSn_JFNK 1.22293 5 392 397 1,268 22.57

C
comePSn 1.22731 19637 — — 54921 —

comePSn_JFNK 1.22731 7 562 569 2,203 24.93

D
comePSn 1.22493 26804 — — 58552 —

comePSn_JFNK 1.22493 8 690 698 2,214 26.45
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4 Conclusion

In this paper, a parallel Jacobian-free Newton Krylov discrete

ordinates method (comePSn_JFNK) is developed to solve the multi-

dimensional multi-group pin-by-pin neutron transport problems,

which combines the parallel JFNK framework and the parallel Sn

method based on KBA algorithm. The comePSn_JFNK code exhibits

the good efficiency compared with the traditional parallel Sn code

with power iterative strategy (comePSn). Furthermore, bymaking full

use of transport sweeping iterative framework, the corresponding

residual functions of the parallel JFNK framework can be easily

evaluated by only a “flattened” power iterative process which

includes a single outer iteration without nested inner iterations.

The comePSn_JFNK and the comePSn codes are developed in the

unified COupled Multiphysics Environment (COME).

By simulating the 2-D/3-D KAIST-3A pin-by-pin

benchmark problems and the 2-D/3-D full-core pin-by-pin

MOX/UOX models, the speedups of the comePSn_JFNK code

are 6–15 for the KAIST-3A benchmark problems and 15–30 for

the full-core MOX/UOX pin-by-pin models, which indicates the

comePSn_JFNK code has significant efficiency advantage for

complicated 3-D full-core pin-by-pin models. Further study is

to improve the parallel efficiency on the massively parallel

computers, to apply the parallel coarse mesh finite difference

methods and the parallel diffusion synthetic acceleration method

as preconditioners, and to extend the comePSn_JFNK method to

solve the pin-by-pin multi-physics coupled problems.
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