2 research outputs found

    Highly Crystalline Films of Organic Small Molecules with Alkyl Chains Fabricated by Weak Epitaxy Growth

    No full text
    Because side-chain engineering of organic conjugated molecules has been widely utilized to tune organic solid-state optoelectronic properties, the achievement of their high-quality films is important for realizing high-performance devices. Here, highly crystalline films of an organic molecule with short alkyl chains, 5,8,15,18-tetrabutyl-5,8,15,18-tetrahydroindolo­[3,2-<i>a</i>]­indole­[30,20:5,6]­quinacridone (C4-IDQA), are fabricated by weak epitaxy growth, and highly oriented, large-area, and continuous films are obtained. Because of the soft matter properties, the C4-IDQA molecules can adjust themselves to realize commensurate epitaxy growth on the inducing layers and exhibited good lattice matching in the thin film phase. The crystalline phase is also observed in thicker C4-IDQA films. The growth behavior of C4-IDQA on the inducing layer is further investigated, including the strong dependence of film morphologies on substrate temperatures and deposition rates due to the poor diffusion ability of C4-IDQA molecules. Moreover, highly crystalline films and high electron field-effect mobility are also obtained for the small molecule <i>N</i>,<i>N</i>′-dioctyl-3,4:9,10-perylene tetracarboxylic diimide (C8-PTCDI), which demonstrate that the weak epitaxy growth method could be an effective way to fabricate highly crystalline films of organic small molecules with flexible side chains

    Highly Crystalline Films of Organic Small Molecules with Alkyl Chains Fabricated by Weak Epitaxy Growth

    No full text
    Because side-chain engineering of organic conjugated molecules has been widely utilized to tune organic solid-state optoelectronic properties, the achievement of their high-quality films is important for realizing high-performance devices. Here, highly crystalline films of an organic molecule with short alkyl chains, 5,8,15,18-tetrabutyl-5,8,15,18-tetrahydroindolo­[3,2-<i>a</i>]­indole­[30,20:5,6]­quinacridone (C4-IDQA), are fabricated by weak epitaxy growth, and highly oriented, large-area, and continuous films are obtained. Because of the soft matter properties, the C4-IDQA molecules can adjust themselves to realize commensurate epitaxy growth on the inducing layers and exhibited good lattice matching in the thin film phase. The crystalline phase is also observed in thicker C4-IDQA films. The growth behavior of C4-IDQA on the inducing layer is further investigated, including the strong dependence of film morphologies on substrate temperatures and deposition rates due to the poor diffusion ability of C4-IDQA molecules. Moreover, highly crystalline films and high electron field-effect mobility are also obtained for the small molecule <i>N</i>,<i>N</i>′-dioctyl-3,4:9,10-perylene tetracarboxylic diimide (C8-PTCDI), which demonstrate that the weak epitaxy growth method could be an effective way to fabricate highly crystalline films of organic small molecules with flexible side chains
    corecore