35 research outputs found

    Influences of phase transition and microstructure on dielectric properties of Bi0.5Na0.5Zr1-xTixO3 ceramics

    Get PDF
    Bismuth sodium zirconate titanate ceramics with the formula Bi0.5Na0.5Zr1-xTixO3 [BNZT], where x = 0.3, 0.4, 0.5, and 0.6, were prepared by a conventional solid-state sintering method. Phase identification was investigated using an X-ray diffraction technique. All compositions exhibited complete solubility of Ti4+ at the Zr4+ site. Both a decrease of unit cell size and phase transition from an orthorhombic Zr-rich composition to a rhombohedral crystal structure in a Ti-rich composition were observed as a result of Ti4+ substitution. These changes caused dielectric properties of BNZT ceramics to enhance. Microstructural observation carried out employing SEM showed that average grain size decreased when addition of Ti increased. Grain size difference of BNZT above 0.4 mole fraction of Ti4+ displayed a significant increase of dielectric constant at room temperature

    Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems

    Get PDF
    Artificial synaptic devices that can be stretched similar to those appearing in soft-bodied animals, such as earthworms, could be seamlessly integrated onto soft machines toward enabled neurological functions. Here, we report a stretchable synaptic transistor fully based on elastomeric electronic materials, which exhibits a full set of synaptic characteristics. These characteristics retained even the rubbery synapse that is stretched by 50%. By implementing stretchable synaptic transistor with mechanoreceptor in an array format, we developed a deformable sensory skin, where the mechanoreceptors interface the external stimulations and generate presynaptic pulses and then the synaptic transistors render postsynaptic potentials. Furthermore, we demonstrated a soft adaptive neurorobot that is able to perform adaptive locomotion based on robotic memory in a programmable manner upon physically tapping the skin. Our rubbery synaptic transistor and neurologically integrated devices pave the way toward enabled neurological functions in soft machines and other applications

    Mantle Flow Underneath the South China Sea Revealed by Seismic Anisotropy

    Get PDF
    It Has Long Been Established that Plastic Flow in the Asthenosphere Interacts Constantly with the overlying Lithosphere and Plays a Pivotal Role in Controlling the Occurrence of Geohazards Such as Earthquakes and Volcanic Eruptions. Unfortunately, Accurately Characterizing the Direction and Lateral Extents of the Mantle Flow Field is Notoriously Difficult, Especially in Oceanic Areas Where Deployment of Ocean Bottom Seismometers (OBSs) is Expensive and Thus Rare. in This Study, by Applying Shear Wave Splitting Analyses to a Dataset Recorded by an OBS Array that We Deployed between Mid-2019 and Mid-2020 in the South China Sea (SCS), We Show that the Dominant Mantle Flow Field Has a NNW-SSE Orientation, Which Can Be Attributed to Mantle Flow Extruded from the Tibetan Plateau by the Ongoing Indian-Eurasian Collision. in Addition, the Results Suggest that E-W Oriented Flow Fields Observed in South China and the Indochina Peninsula Do Not Extend to the Central SCS

    Combination of 4-1BB and DAP10 promotes proliferation and persistence of NKG2D(bbz) CAR-T cells

    Get PDF
    Chimeric antigen receptor (CAR)-T cell therapy has been shown to have considerable therapeutic effects in hematological malignancies, and NKG2D(z) CAR-T cell therapy has been verified to be safe based on clinical trials. However, due to the poor persistence of NKG2D(z) CAR-T cells, their therapeutic effect is not obvious. Here, we constructed NKG2D(bbz) CAR-T cells that can simultaneously activate 4-1BB and DAP10 costimulatory signaling. They were found to be cytotoxic to the target cells in vitro and in vivo. They exhibited low differentiation, low exhaustion, and good proliferation. Importantly, the proportions of central memory T (Tcm) and stem cell-like memory T (Tscm) cell subsets were strikingly increased. After long-term incubation with the target cells, they displayed reduced exhaustion compared to NKG2D(z) CAR-T cells. Further, in the presence of the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, they exhibited reduced exhaustion and apoptosis, upregulated Bcl2 expression, and an increased proportion of Tcm cell subsets. Finally, NKG2D(bbz) CAR-T cells had better antitumor effects in vivo. In summary, the results showed that NKG2D(bbz) CAR-T cells may be valuable for cellular immunotherapy of cancer

    Association of FTH1-expressing circulating tumor cells with efficacy of neoadjuvant chemotherapy for patients with breast cancer: a prospective cohort study

    Get PDF
    Background The association between different phenotypes and genotypes of circulating tumor cells (CTCs) and efficacy of neoadjuvant chemotherapy (NAC) remains uncertain. This study was conducted to evaluate the relationship of FTH1 gene-associated CTCs (F-CTC) with/without epithelial-mesenchymal transition (EMT) markers, or their dynamic changes with the efficacy of NAC in patients with non-metastatic breast cancer. Patients and Methods This study enrolled 120 patients with non-metastatic breast cancer who planned to undergo NAC. The FTH1 gene and EMT markers in CTCs were detected before NAC (T0), after 2 cycles of chemotherapy (T1), and before surgery (T2). The associations of these different types of CTCs with rates of pathological complete response (pCR) and breast-conserving surgery (BCS) were evaluated using the binary logistic regression analysis. Results F-CTC in peripheral blood ā‰„1 at T0 was an independent factor for pCR rate in patients with HER2-positive (odds ratio [OR]=0.08, 95% confidence interval [CI], 0.01-0.98, P = .048). The reduction in the number of F-CTC at T2 was an independent factor for BCS rate (OR = 4.54, 95% CI, 1.14-18.08, P = .03). Conclusions The number of F-CTC prior to NAC was related to poor response to NAC. Monitoring of F-CTC may help clinicians formulate personalized NAC regimens and implement BCS for patients with non-metastatic breast cancer

    Genomic Analyses Reveal Mutational Signatures and Frequently Altered Genes in Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicatesĀ that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets

    Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device.

    Get PDF
    Invadopodia or invasive feet, which are actin-rich membrane protrusions with matrix degradation activity formed by invasive cancer cells, are a key determinant in the malignant invasive progression of tumors and represent an important target for cancer therapies. In this work, we presented a microfluidic 3D culture device with continuous supplement of fresh media via a syringe pump. The device mimicked tumor microenvironment in vivo and could be used to assay invadopodia formation and to study the mechanism of human lung cancer invasion. With this device, we investigated the effects of epidermal growth factor (EGF) and matrix metalloproteinase (MMP) inhibitor, GM6001 on invadopodia formation by human non-small cell lung cancer cell line A549 in 3D matrix model. This device was composed of three units that were capable of achieving the assays on one control group and two experimental groups' cells, which were simultaneously pretreated with EGF or GM6001 in parallel. Immunofluorescence analysis of invadopodia formation and extracellular matrix degradation was conducted using confocal imaging system. We observed that EGF promoted invadopodia formation by A549 cells in 3D matrix and that GM6001 inhibited the process. These results demonstrated that epidermal growth factor receptor (EGFR) signaling played a significant role in invadopodia formation and related ECM degradation activity. Meanwhile, it was suggested that MMP inhibitor (GM6001) might be a powerful therapeutic agent targeting invadopodia formation in tumor invasion. This work clearly demonstrated that the microfluidic-based 3D culture device provided an applicable platform for elucidating the mechanism of cancer invasion and could be used in testing other anti-invasion agents

    Deep neural network training method based on vectorgraphs for designing of metamaterial broadband polarization converters

    Get PDF
    Abstract In this work, we proposed a method of extracting feature parameters for deep neural network prediction based on the vectorgraph storage format, which can be applied to the design of electromagnetic metamaterials with sandwich structures. Compared to current methods of manually extracting feature parameters, this method can automatically and precisely extract the feature parameters of arbitrary two-dimensional surface patterns of the sandwich structure. The position and size of surface patterns can be freely defined, and the surface patterns can be easily scaled, rotated, translated, or transformed in other ways. Compared to the pixel graph feature extraction method, this method can adapt to very complex surface pattern design in a more efficient way. And the response band can be easily shifted by scaling the designed surface pattern. To illustrate and verify the method, a 7-layer deep neural network was built to design a metamaterial broadband polarization converter. Prototype samples were fabricated and tested to verify the accuracy of the prediction results. In general, the method is potentially applicable to the design of different kinds of sandwich-structure metamaterials, with different functions and in different frequency bands

    Biochar prepared at different pyrolysis temperatures affects urea-nitrogen immobilization and N2O emissions in paddy fields

    No full text
    Background Food safety has become a major issue, with serious environmental pollution resulting from losses of nitrogen (N) fertilizers. N is a key element for plant growth and is often one of the most important yield-limiting nutrients in paddy soil. Urea-N immobilization is an important process for restoring the levels of soil nutrient depleted by rice production and sustaining productivity. The benefits of biochar application include improved soil fertility, altered N dynamics, and reduced nutrient leaching. However, due to high variability in the quality of biochar, the responses of N loss and rice productivity to biochar amendments, especially those prepared at different pyrolysis temperatures, are still unclear. The main objectives of the present study were to examine the effects of biochar prepared at different pyrolysis temperatures on fertilizer N immobilization in paddy soil and explore the underlying mechanisms. Methods Two biochar samples were prepared by pyrolysis of maize straw at 400Ā Ā°C (B400) and 700Ā Ā°C (B700), respectively. The biochar was applied to paddy soil at three rates (0, 0.7, and 2.1%, w/w), with or without N fertilization (0, 168, and 210 kg N haā€“1). Pot experiments were performed to determine nitrous oxide (N2O) emissions and 15N recovery from paddy soil using a 15N tracer across the rice growing season. Results Compared with the non-biochar control, biochar significantly decreased soil bulk density while increasing soil porosity, irrespective of pyrolysis temperature and N fertilizer level. Under B400 and B700, a high biochar rate decreased N loss rate to 66.42 and 68.90%, whereas a high N level increased it to 77.21 and 76.99%, respectively. Biochar also markedly decreased N2O emissions to 1.06 (B400) and 0.75 kg haāˆ’1 (B700); low-N treatment caused a decrease in N2O emissions under B400, but this decrease was not observed under B700. An application rate of biochar of 2.1% plus 210 kg haāˆ’1 N fertilizer substantially decreased the N fertilizer-induced N2O emission factor under B400, whereas under B700 no significant difference was observed. Biochar combined with N fertilizer treatment decreased rice biomass and grain yield by an average of 51.55 and 23.90 g potā€“1, respectively, but the yield reduction under B700 was lower than under B400. Conclusion Irrespective of pyrolysis temperature, biochar had a positive effect on residual soil 15N content, while it negatively affected the 15N recovery of rice, N2O emissions from soil, rice biomass, and grain yield in the first year. Generally, a high application rate of biochar prepared at high or low pyrolysis temperature reduced the N fertilizer-induced N2O emission factor considerably. These biochar effects were dependent on N fertilizer level, biochar application rate, and their interactions
    corecore