426 research outputs found

    Input-to-State Stability for Dynamical Neural Networks with Time-Varying Delays

    Get PDF
    A class of dynamical neural network models with time-varying delays is considered. By employing the Lyapunov-Krasovskii functional method and linear matrix inequalities (LMIs) technique, some new sufficient conditions ensuring the input-to-state stability (ISS) property of the nonlinear network systems are obtained. Finally, numerical examples are provided to illustrate the efficiency of the derived results

    CD40LG and GZMB were correlated with adipose tissue macrophage infiltration and involved in obstructive sleep apnea related metabolic dysregulation: Evidence from bioinformatics analysis

    Get PDF
    Both obesity and obstructive sleep apnea (OSA) can lead to metabolic dysregulation and systemic inflammation. Similar to obesity, increasing evidence has revealed that immune infiltration in the visceral adipose tissue (VAT) is associated with obstructive sleep apnea-related morbidity. However, the pathological changes and potential molecular mechanisms in visceral adipose tissue of obstructive sleep apnea patients need to be further studied. Herein, by bioinformatics analysis and clinical validation methods, including the immune-related differentially expressed genes (IRDEGs) analysis, protein-protein interaction network (PPI), functional enrichment analysis, a devolution algorithm (CIBERSORT), spearman’s correlation analysis, polymerase chain reaction (PCR), Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), we identified and validated 10 hub IRDEGs, the relative mRNA expression of four hub genes (CRP, CD40LG, CCL20, and GZMB), and the protein expression level of two hub genes (CD40LG and GZMB) were consistent with the bioinformatics analysis results. Immune infiltration results further revealed that obstructive sleep apnea patients contained a higher proportion of pro-inflammatory M1 macrophages and a lower proportion of M2 macrophages. Spearman’s correlation analysis showed that CD40LG was positively correlated with M1 macrophages and GZMB was negatively correlated with M2 macrophages. CD40LG and GZMB might play a vital role in the visceral adipose tissue homeostasis of obstructive sleep apnea patients. Their interaction with macrophages and involved pathways not only provides new insights for understanding molecular mechanisms but also be of great significance in discovering novel small molecules or other promising candidates as immunotherapies of OSA-associated metabolic complications

    A Survey of Source Code Search: A 3-Dimensional Perspective

    Full text link
    (Source) code search is widely concerned by software engineering researchers because it can improve the productivity and quality of software development. Given a functionality requirement usually described in a natural language sentence, a code search system can retrieve code snippets that satisfy the requirement from a large-scale code corpus, e.g., GitHub. To realize effective and efficient code search, many techniques have been proposed successively. These techniques improve code search performance mainly by optimizing three core components, including query understanding component, code understanding component, and query-code matching component. In this paper, we provide a 3-dimensional perspective survey for code search. Specifically, we categorize existing code search studies into query-end optimization techniques, code-end optimization techniques, and match-end optimization techniques according to the specific components they optimize. Considering that each end can be optimized independently and contributes to the code search performance, we treat each end as a dimension. Therefore, this survey is 3-dimensional in nature, and it provides a comprehensive summary of each dimension in detail. To understand the research trends of the three dimensions in existing code search studies, we systematically review 68 relevant literatures. Different from existing code search surveys that only focus on the query end or code end or introduce various aspects shallowly (including codebase, evaluation metrics, modeling technique, etc.), our survey provides a more nuanced analysis and review of the evolution and development of the underlying techniques used in the three ends. Based on a systematic review and summary of existing work, we outline several open challenges and opportunities at the three ends that remain to be addressed in future work.Comment: submitted to ACM Transactions on Software Engineering and Methodolog

    Machine Learning for Actionable Warning Identification: A Comprehensive Survey

    Full text link
    Actionable Warning Identification (AWI) plays a crucial role in improving the usability of static code analyzers. With recent advances in Machine Learning (ML), various approaches have been proposed to incorporate ML techniques into AWI. These ML-based AWI approaches, benefiting from ML's strong ability to learn subtle and previously unseen patterns from historical data, have demonstrated superior performance. However, a comprehensive overview of these approaches is missing, which could hinder researchers/practitioners from understanding the current process and discovering potential for future improvement in the ML-based AWI community. In this paper, we systematically review the state-of-the-art ML-based AWI approaches. First, we employ a meticulous survey methodology and gather 50 primary studies from 2000/01/01 to 2023/09/01. Then, we outline the typical ML-based AWI workflow, including warning dataset preparation, preprocessing, AWI model construction, and evaluation stages. In such a workflow, we categorize ML-based AWI approaches based on the warning output format. Besides, we analyze the techniques used in each stage, along with their strengths, weaknesses, and distribution. Finally, we provide practical research directions for future ML-based AWI approaches, focusing on aspects like data improvement (e.g., enhancing the warning labeling strategy) and model exploration (e.g., exploring large language models for AWI)

    Abstract Syntax Tree for Programming Language Understanding and Representation: How Far Are We?

    Full text link
    Programming language understanding and representation (a.k.a code representation learning) has always been a hot and challenging task in software engineering. It aims to apply deep learning techniques to produce numerical representations of the source code features while preserving its semantics. These representations can be used for facilitating subsequent code-related tasks. The abstract syntax tree (AST), a fundamental code feature, illustrates the syntactic information of the source code and has been widely used in code representation learning. However, there is still a lack of systematic and quantitative evaluation of how well AST-based code representation facilitates subsequent code-related tasks. In this paper, we first conduct a comprehensive empirical study to explore the effectiveness of the AST-based code representation in facilitating follow-up code-related tasks. To do so, we compare the performance of models trained with code token sequence (Token for short) based code representation and AST-based code representation on three popular types of code-related tasks. Surprisingly, the overall quantitative statistical results demonstrate that models trained with AST-based code representation consistently perform worse across all three tasks compared to models trained with Token-based code representation. Our further quantitative analysis reveals that models trained with AST-based code representation outperform models trained with Token-based code representation in certain subsets of samples across all three tasks. We also conduct comprehensive experiments to evaluate and reveal the impact of the choice of AST parsing/preprocessing/encoding methods on AST-based code representation and subsequent code-related tasks. Our study provides future researchers with detailed guidance on how to select solutions at each stage to fully exploit AST.Comment: submitted to ACM Transactions on Software Engineering and Methodology. arXiv admin note: text overlap with arXiv:2103.10668 by other author

    Ginsenoside Rb2 Alleviates Obesity by Activation of Brown Fat and Induction of Browning of White Fat

    Get PDF
    Ginsenoside Rb2 (Rb2), the most abundant saponin contained in Panax ginseng, has been used to treat variety of metabolic diseases. However, its effects in obesity and potential mechanisms are not well-understood. In the present study, we investigated metabolic performance with a Rb2 supplement in diet-induced obese (DIO) mice, focusing on the effects and mechanisms of Rb2 on brown and beige fat functions. Our results demonstrated that Rb2 effectively reduced body weight, improved insulin sensitivity, as well as induced energy expenditure in DIO mice. Histological and gene analysis revealed that Rb2 induced activation of brown fat and browning of white fat by reducing lipid droplets, stimulating uncoupling protein 1 (UCP1) staining, and increasing expression of thermogenic and mitochondrial genes, which could be recapitulated in 3T3-L1, C3H10T1/2, and primary adipocytes. In addition, Rb2 induced phosphorylation of AMP-activated protein kinase (AMPK) both in vitro and in vivo. These effects were shown to be dependent on AMPK since its inhibitor blocked Rb2 from inducing expressions of Pgc1α and Ucp1. Overall, the present study revealed that Rb2 activated brown fat and induced browning of white fat, which increased energy expenditure and thermogenesis, and consequently ameliorated obesity and metabolic disorders. These suggest that Rb2 holds promise in treating obesity

    Associations Between Natural Language Processing (NLP) Enriched Social Determinants of Health and Suicide Death among US Veterans

    Full text link
    Importance: Social determinants of health (SDOH) are known to be associated with increased risk of suicidal behaviors, but few studies utilized SDOH from unstructured electronic health record (EHR) notes. Objective: To investigate associations between suicide and recent SDOH, identified using structured and unstructured data. Design: Nested case-control study. Setting: EHR data from the US Veterans Health Administration (VHA). Participants: 6,122,785 Veterans who received care in the US VHA between October 1, 2010, and September 30, 2015. Exposures: Occurrence of SDOH over a maximum span of two years compared with no occurrence of SDOH. Main Outcomes and Measures: Cases of suicide deaths were matched with 4 controls on birth year, cohort entry date, sex, and duration of follow-up. We developed an NLP system to extract SDOH from unstructured notes. Structured data, NLP on unstructured data, and combining them yielded six, eight and nine SDOH respectively. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. Results: In our cohort, 8,821 Veterans committed suicide during 23,725,382 person-years of follow-up (incidence rate 37.18/100,000 person-years). Our cohort was mostly male (92.23%) and white (76.99%). Across the five common SDOH as covariates, NLP-extracted SDOH, on average, covered 80.03% of all SDOH occurrences. All SDOH, measured by structured data and NLP, were significantly associated with increased risk of suicide. The SDOH with the largest effects was legal problems (aOR=2.66, 95% CI=.46-2.89), followed by violence (aOR=2.12, 95% CI=1.98-2.27). NLP-extracted and structured SDOH were also associated with suicide. Conclusions and Relevance: NLP-extracted SDOH were always significantly associated with increased risk of suicide among Veterans, suggesting the potential of NLP in public health studies.Comment: Submitted to JAMA Network Ope
    • …
    corecore