12 research outputs found

    Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes

    Get PDF
    Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB- binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states—found in all phytochromes studied, albeit with different relative contributions—differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub- states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed

    Intrinsic default mode network connectivity predicts spontaneous verbal descriptions of autobiographical memories during social processing

    No full text
    Neural systems activated in a coordinated way during rest, known as the default mode network (DMN), also support autobiographical memory (AM) retrieval and social processing/mentalizing. However, little is known about how individual variability in reliance on personal memories during social processing relates to individual differences in DMN functioning during rest (intrinsic functional connectivity). Here we examined 18 participants’ spontaneous descriptions of autobiographical memories during a two-hour, private, open-ended interview in which they reacted to a series of true stories about real people’s social situations and responded to the prompt, how does this person’s story make you feel? We classified these descriptions as either containing factual information (semantic AMs) or more elaborate descriptions of emotionally meaningful events (episodic AMs). We also collected resting state fMRI scans from the participants and related individual differences in frequency of described AMs to participants’ intrinsic functional connectivity within regions of the DMN. We found that producing more descriptions of either memory type correlated with stronger intrinsic connectivity in the parahippocampal and middle temporal gyri. Additionally, episodic AM descriptions correlated with connectivity in the bilateral hippocampi and medial prefrontal cortex, and semantic memory descriptions correlated with connectivity in right inferior lateral parietal cortex. These findings suggest that in individuals who naturally invoke more memories during social processing, brain regions involved in memory retrieval and self/social processing are more strongly coupled to the DMN during rest

    Recognition memory of neutral words can be impaired by task-irrelevant emotional encoding contexts: Behavioral and electrophysiological evidence

    Get PDF
    Previous studies on the effects of emotional context on memory for centrally presented neutral items have obtained inconsistent results. And in most of those studies subjects were asked to either make a connection between the item and the context at study or retrieve both the item and the context. When no response for the contexts is required, how emotional contexts influence memory for neutral items is still unclear. Thus, the present study attempted to investigate the influences of four types of emotional picture contexts on recognition memory of neutral words using both behavioral and event-related potential (ERP) measurements. During study, words were superimposed centrally onto emotional contexts, and subjects were asked to just remember the words. During test, both studied and new words were presented without the emotional contexts and subjects had to make old/new judgments for those words. The results revealed that, compared with the neutral context, the negative contexts and positive high-arousing context impaired recognition of words. ERP results at encoding demonstrated that, compared with items presented in the neutral context, items in the positive and negative high-arousing contexts elicited more positive ERPs, which probably reflects an automatic process of attention capturing of high-arousing context as well as a conscious and effortful process of overcoming the interference of high-arousing context. During retrieval, significant FN400 old/new effects occurred in conditions of the negative low-arousing, positive, and neutral contexts but not in the negative high-arousing condition. Significant LPC old/new effects occurred in all conditions of context. However, the LPC old/new effect in the negative high-arousing condition was smaller than that in the positive high-arousing and low-arousing conditions. These results suggest that emotional context might influence both the familiarity and recollection processes

    Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis

    No full text
    Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid (ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 ÎĽM) of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L.) suffering from 5 days of 15% polyethylene glycol (PEG)-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Under drought stress conditions, ABA markedly increased contents of GSH and ASA in both leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of eight genes encoding ASA and GSH synthesis-related enzymes were measured using quantitative real-time reverse transcription polymerase chain reaction (qPCR). The results showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH cycle enzymes. Moreover, these genes exhibited differential expression patterns between the root and leaf organs of ABA-treated wheat seedlings during drought stress. These results implied that exogenous ABA increased the levels of GSH and ASA in drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue were compared between ABA- and salicylic acid (SA)-treated wheat seedlings under PEG-stimulated drought stress, suggesting that they increased the contents of ASA and GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes. Our results increase our understanding of the molecular mechanism of ABA-induced drought tolerance in higher plant

    Genetic Evidence for O-Specific Antigen as Receptor of Pseudomonas aeruginosa Phage K8 and Its Genomic Analysis

    No full text
    Phage therapy requires the comprehensive understanding of the mechanisms underlying the host-phage interactions. In this work, to identify the genes related to Pseudomonas aeruginosa phage K8 receptor synthesis, 16 phage-resistant mutants were selected from a Tn5G transposon mutant library of strain PAK. The disrupted genetic loci were identified and they were related to O-specific antigen (OSA) synthesis, including gene wbpR, ssg, wbpV, wbpO, and Y880_RS05480, which encoded a putative O-antigen polymerase Wzy. The LPS profile of the Y880_RS05480 mutant was analyzed and shown to lack the O-antigen. Therefore, the data from characterization of Y880_RS05480 by TMHMM and SDS-PAGE silver staining analysis suggest that this locus might encode Wzy. The complete phage K8 genome was characterized as 93879 bp in length and contained identical 1188-bp terminal direct repeats. Comparative genomic analysis showed that phage K8 was highly homologous to members of the genus PaP1-like phages. On the basis of our genetic findings, OSA of P. aeruginosa PAK is proven to be the receptor of phage K8. The highly conserved structural proteins among the genetic closely related phages suggest that they may recognize the same receptor

    The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress

    Get PDF
    Dehydrins (DHNs), group 2 of late embryogenesis abundant (LEA) proteins, are up-regulated in most plants during cold, drought, heat or salinity stress. All DHNs contain at least one K-segment, which is believed to play a significant role in DHN function by forming an amphipathic helix. In previous studies, wzy2, an YSK2-type DHN gene, was isolated from the Zhengyin 1 cultivar of Triticum aestivum under cold and drought stress treatment conditions. Four WZY2 truncated derivatives were constructed to knock out the K-, Y- or S-segment, which potentially affect the function of the protein. In vivo assays of Escherichia coli viability enhancement, in vitro lactate dehydrogenase (LDH) activity protection and ex vivo protein aggregation prevention assays revealed that WZY2 acted as a protectant and improved stress tolerance during temperature variation. The results also showed that unlike the truncated derivative without K-segments, the derivative containing two K-segments had remarkable effects that were similar to those of full-length WZY2, indicating that the K-segment is the major functional component of WZY2. Moreover, compared with the other segments, the first K-segment might be the most critical contributor to WZY2 functionality. In general, this work highlights the behavior of DHNs in relieving cold stress ex vivo and the contribution of the K-segment to DHN function

    heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis

    Get PDF
    Heat shock factors (Hsfs) are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP), ascorbate peroxidase (APX), inositol-3-phosphate synthase (IPS), and galactinol synthase (GOLS1), showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops

    Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Get PDF
    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI) have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across a lover group (LG, N=34, currently intensely in love), ended-love group (ELG, N=34, romantic relationship ended recently), and single group (SG, N=32, never fallen in love).The results showed that:1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); 2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3) functional connectivity (FC) within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens) and the social cognition network (temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus and temporal lobe) was significantly increased in the LG (in comparison to the ELG and SG); 4) in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love

    Transcriptome-based gene profiling provides novel insights into the characteristics of radish root response to Cr stress with next-generation sequencing

    Get PDF
    Radish (Raphanus sativus L.) is an important worldwide root vegetable crop with high nutrient values and is adversely affected by non-essential heavy metals including chromium (Cr). Little is known about the molecular mechanism underlying Cr stress response in radish. In this study, RNA-Seq technique was employed to identify differentially expressed genes (DEGs) under Cr stress. Based on de novo transcriptome assembly, there were 30,676 unigenes representing 60,881 transcripts isolated from radish root under Cr stress. Differential gene analysis revealed that 2,985 uingenes were significantly differentially expressed between Cr-free (CK) and Cr-treated (Cr600) libraries, among which 1,424 were up-regulated and 1,561 down-regulated. Gene ontology (GO) analysis revealed that these DEGs were mainly involved in primary metabolic process, response to abiotic stimulus, cellular metabolic process and small molecule metabolic process. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the DEGs were mainly involved in protein processing in endoplasmic reticulum, starch and sucrose metabolism, amino acid metabolism, glutathione metabolism, drug and xenobiotics by cytochrome P450 metabolism. RT-qPCR analysis showed that the expression patterns of 12 randomly selected DEGs were highly accordant with the results from RNA-seq. Furthermore, many candidate genes including signaling protein kinases, transcription factors and metal transporters, chelate compound biosynthesis and antioxidant system, were involved in defense and detoxification mechanisms of Cr stress response regulatory networks. These results would provide novel insight into molecular mechanism underlying plant responsiveness to Cr stress and facilitate further genetic manipulation on Cr uptake and accumulation in radish

    Mirror neuron system based therapy for aphasia rehabilitation

    Get PDF
    Objective: To investigate the effect of hand action observation training, i.e. mirror neuron system (MNS) based training, on language function of aphasic patients after stroke. In addition, to reveal the tentative mechanism underlying this effect.Methods: Six aphasic patients after stroke, meeting the criteria, undergo three weeks’ training protocol (30 min per day, 6 days per week). Among them, four patients accepted an ABA training design, i.e. they implemented Protocol A (hand action observation combined with repetition) in the first and third weeks while carried out Protocol B (static objects observation combined with repetition) in the second week. Conversely, for the other two patients, BAB training design was adopted, i.e. patients took Protocol B in the first and the third weeks and accepted Protocol A in the second week. Picture naming test, western aphasia battery (WAB) and Token Test were applied to evaluate the changes of language function before and after each week’s training. Furthermore, two subjects (one aphasic patient and one healthy volunteer) attended a functional MRI (fMRI) experiment, by which we tried to reveal the mechanism underlying possible language function changes after training.Results: Compared with static objects observation and repetition training (Protocol B), hand action observation and repetition training (Protocol A) effectively improved most aspects of the language function in all six patients, as demonstrated in the picture naming test, subtests of oral language and aphasia quotient(AQ) of WAB. In addition, the fMRI experiment showed that Protocol A induced more activations in the MNS of two participants when compared to Protocol B. Conclusion: The mirror neuron based therapy may facilitate the language recovery for aphasic patients and this to some extent provides a novel direction of rehabilitation for aphasia patients
    corecore