150 research outputs found

    High Planar Arrays and Array Feeds for Satellite Communications

    Get PDF
    Limited scan range beamsteering can serve as a cost-effective solution for three application scenarios in satellite communications. Two feasible technical paths to realize the function are discussed in this paper. The first one is to utilize a electronically steered array feed with a conventional parabolic reflector. By feeding the reflector with different weights across the array feed, the phase distribution on the dish aperture is continuously shifted leading to a steered beam. Acquisition and tracking functions can be realized economically by integrating a power detector based feedback system. A necessary calibration process is provided to ensure a correct indicator of signalto- noise ratio. One dimensional bemsteering was demonstrated experimentally and an improved two dimensional system is shown as well. The second path is to use a tile array with each tile consisting of a passive network fed subarray, which reduces the cost of active components significantly, at the expense of beamsteering range. The rule of the relationship between tile distance and element distance is discussed. Preliminary array factor analysis shows the sidelobe level of a uniformly excited array panel exceeds the regulatory pattern mask requirement

    Generalized bioinspired approach to a daytime radiative cooling "skin"

    Full text link
    Energy-saving cooling materials with strong operability are desirable towards sustainable thermal management. Inspired by the cooperative thermo-optical effect in fur of polar bear, we develop a flexible and reusable cooling skin via laminating a polydimethylsiloxane film with a highly-scattering polyethylene aerogel. Owing to its high porosity of 97.9% and tailored pore size of 3.8 +- 1.4 micrometers, superior solar reflectance of 0.96 and high transparency to irradiated thermal energy of 0.8 can be achieved at a thickness of 2.7 mm. Combined with low thermal conductivity of 0.032 W/m/K of the aerogel, the cooling skin exerts midday sub-ambient temperature drops of 5-6 degrees in a metropolitan environment, with an estimated limit of 14 degrees under ideal service conditions. We envision that this generalized bilayer approach will construct a bridge from night-time to daytime radiative cooling and pave the way for economical, scalable, flexible and reusable cooling materials.Comment: 15 pages, 4 figures, of which another version has been accepted by ACS ami but not published ye

    A patch-based method for the evaluation of dense image matching quality

    Get PDF
    Airborne laser scanning and photogrammetry are two main techniques to obtain 3D data representing the object surface. Due to the high cost of laser scanning, we want to explore the potential of using point clouds derived by dense image matching (DIM), as effective alternatives to laser scanning data. We present a framework to evaluate point clouds from dense image matching and derived Digital Surface Models (DSM) based on automatically extracted sample patches. Dense matching errors and noise level are evaluated quantitatively at both the local level and whole block level. In order to demonstrate its usability, the proposed framework has been used for several example studies identifying the impact of various factors onto the DIM quality. One example study proves that the overall quality on smooth ground areas improves when oblique images are used in addition. This framework is then used to compare the dense matching quality on three different terrain types. In another application of the framework, a bias between the point cloud and the DSM generated from a photogrammetric workflow is identified. The framework is also used to reveal inhomogeneity in the distribution of the dense matching errors caused by overfitting the bundle network to ground control points

    Global 3D non-rigid registration of deformable objects using a single RGB-D camera

    Get PDF
    We present a novel global non-rigid registration method for dynamic 3D objects. Our method allows objects to undergo large non-rigid deformations, and achieves high quality results even with substantial pose change or camera motion between views. In addition, our method does not require a template prior and uses less raw data than tracking based methods since only a sparse set of scans is needed. We compute the deformations of all the scans simultaneously by optimizing a global alignment problem to avoid the well-known loop closure problem, and use an as-rigid-as-possible constraint to eliminate the shrinkage problem of the deformed shapes, especially near open boundaries of scans. To cope with large-scale problems, we design a coarse-to-fine multi-resolution scheme, which also avoids the optimization being trapped into local minima. The proposed method is evaluated on public datasets and real datasets captured by an RGB-D sensor. Experimental results demonstrate that the proposed method obtains better results than several state-of-the-art methods

    Prediction of patient choice tendency in medical decision-making based on machine learning algorithm

    Get PDF
    ObjectiveMachine learning (ML) algorithms, as an early branch of artificial intelligence technology, can effectively simulate human behavior by training on data from the training set. Machine learning algorithms were used in this study to predict patient choice tendencies in medical decision-making. Its goal was to help physicians understand patient preferences and to serve as a resource for the development of decision-making schemes in clinical treatment. As a result, physicians and patients can have better conversations at lower expenses, leading to better medical decisions.MethodPatient medical decision-making tendencies were predicted by primary survey data obtained from 248 participants at third-level grade-A hospitals in China. Specifically, 12 predictor variables were set according to the literature review, and four types of outcome variables were set based on the optimization principle of clinical diagnosis and treatment. That is, the patient's medical decision-making tendency, which is classified as treatment effect, treatment cost, treatment side effect, and treatment experience. In conjunction with the study's data characteristics, three ML classification algorithms, decision tree (DT), k-nearest neighbor (KNN), and support vector machine (SVM), were used to predict patients' medical decision-making tendency, and the performance of the three types of algorithms was compared.ResultsThe accuracy of the DT algorithm for predicting patients' choice tendency in medical decision making is 80% for treatment effect, 60% for treatment cost, 56% for treatment side effects, and 60% for treatment experience, followed by the KNN algorithm at 78%, 66%, 74%, 84%, and the SVM algorithm at 82%, 76%, 80%, 94%. At the same time, the comprehensive evaluation index F1-score of the DT algorithm are 0.80, 0.61, 0.58, 0.60, the KNN algorithm are 0.75, 0.65, 0.71, 0.84, and the SVM algorithm are 0.81, 0.74, 0.73, 0.94.ConclusionAmong the three ML classification algorithms, SVM has the highest accuracy and the best performance. Therefore, the prediction results have certain reference values and guiding significance for physicians to formulate clinical treatment plans. The research results are helpful to promote the development and application of a patient-centered medical decision assistance system, to resolve the conflict of interests between physicians and patients and assist them to realize scientific decision-making
    • …
    corecore