2,868 research outputs found

    Tunable Quantum Beam Splitters for Coherent Manipulation of a Solid-State Tripartite Qubit System

    Get PDF
    Coherent control of quantum states is at the heart of implementing solid-state quantum processors and testing quantum mechanics at the macroscopic level. Despite significant progress made in recent years in controlling single- and bi-partite quantum systems, coherent control of quantum wave function in multipartite systems involving artificial solid-state qubits has been hampered due to the relatively short decoherence time and lacking of precise control methods. Here we report the creation and coherent manipulation of quantum states in a tripartite quantum system, which is formed by a superconducting qubit coupled to two microscopic two-level systems (TLSs). The avoided crossings in the system's energy-level spectrum due to the qubit-TLS interaction act as tunable quantum beam splitters of wave functions. Our result shows that the Landau-Zener-St\"{u}ckelberg interference has great potential in the precise control of the quantum states in the tripartite system.Comment: 24 pages, 3 figure

    Adversarial Attack and Defense on Graph Data: A Survey

    Full text link
    Deep neural networks (DNNs) have been widely applied to various applications including image classification, text generation, audio recognition, and graph data analysis. However, recent studies have shown that DNNs are vulnerable to adversarial attacks. Though there are several works studying adversarial attack and defense strategies on domains such as images and natural language processing, it is still difficult to directly transfer the learned knowledge to graph structure data due to its representation challenges. Given the importance of graph analysis, an increasing number of works start to analyze the robustness of machine learning models on graph data. Nevertheless, current studies considering adversarial behaviors on graph data usually focus on specific types of attacks with certain assumptions. In addition, each work proposes its own mathematical formulation which makes the comparison among different methods difficult. Therefore, in this paper, we aim to survey existing adversarial learning strategies on graph data and first provide a unified formulation for adversarial learning on graph data which covers most adversarial learning studies on graph. Moreover, we also compare different attacks and defenses on graph data and discuss their corresponding contributions and limitations. In this work, we systemically organize the considered works based on the features of each topic. This survey not only serves as a reference for the research community, but also brings a clear image researchers outside this research domain. Besides, we also create an online resource and keep updating the relevant papers during the last two years. More details of the comparisons of various studies based on this survey are open-sourced at https://github.com/YingtongDou/graph-adversarial-learning-literature.Comment: In submission to Journal. For more open-source and up-to-date information, please check our Github repository: https://github.com/YingtongDou/graph-adversarial-learning-literatur

    Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case

    Get PDF
    The official published version of the article can be found at the link below.This paper is concerned with a new distributed H∞-consensus filtering problem over a finite-horizon for sensor networks with multiple missing measurements. The so-called H∞-consensus performance requirement is defined to quantify bounded consensus regarding the filtering errors (agreements) over a finite-horizon. A set of random variables are utilized to model the probabilistic information missing phenomena occurring in the channels from the system to the sensors. A sufficient condition is first established in terms of a set of difference linear matrix inequalities (DLMIs) under which the expected H∞-consensus performance constraint is guaranteed. Given the measurements and estimates of the system state and its neighbors, the filter parameters are then explicitly parameterized by means of the solutions to a certain set of DLMIs that can be computed recursively. Subsequently, two kinds of robust distributed H∞-consensus filters are designed for the system with norm-bounded uncertainties and polytopic uncertainties. Finally, two numerical simulation examples are used to demonstrate the effectiveness of the proposed distributed filters design scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Quantum oscillations in adsorption energetics of atomic oxygen on Pb(111) ultrathin films: A density-functional theory study

    Full text link
    Using first-principles calculations, we have systematically studied the quantum size effects of ultrathin Pb(111) films on the adsorption energies and diffusion energy barriers of oxygen atoms. For the on-surface adsorption of oxygen atoms at different coverages, all the adsorption energies are found to show bilayer oscillation behaviors. It is also found that the work function of Pb(111) films still keeps the bilayer-oscillation behavior after the adsorption of oxygen atoms, with the values being enlarged by 2.10 to 2.62 eV. For the diffusion and penetration of the adsorbed oxygen atoms, it is found that the most energetically favored paths are the same on different Pb(111) films. And because of the modulation of quantum size effects, the corresponding energy barriers are all oscillating with a bilayer period on different Pb(111) films. Our studies indicate that the quantum size effect in ultrathin metal films can modulate a lot of processes during surface oxidation

    Performance Analysis and Comparison of Non-ideal Wireless PBFT and RAFT Consensus Networks in 6G Communications

    Full text link
    Due to advantages in security and privacy, blockchain is considered a key enabling technology to support 6G communications. Practical Byzantine Fault Tolerance (PBFT) and RAFT are seen as the most applicable consensus mechanisms (CMs) in blockchain-enabled wireless networks. However, previous studies on PBFT and RAFT rarely consider the channel performance of the physical layer, such as path loss and channel fading, resulting in research results that are far from real networks. Additionally, 6G communications will widely deploy high-frequency signals such as terahertz (THz) and millimeter wave (mmWave), while performances of PBFT and RAFT are still unknown when these signals are transmitted in wireless PBFT or RAFT networks. Therefore, it is urgent to study the performance of non-ideal wireless PBFT and RAFT networks with THz and mmWave signals, to better make PBFT and RAFT play a role in the 6G era. In this paper, we study and compare the performance of THz and mmWave signals in non-ideal wireless PBFT and RAFT networks, considering Rayleigh Fading (RF) and close-in Free Space (FS) reference distance path loss. Performance is evaluated by five metrics: consensus success rate, latency, throughput, reliability gain, and energy consumption. Meanwhile, we find and derive that there is a maximum distance between two nodes that can make CMs inevitably successful, and it is named the active distance of CMs. The research results not only analyze the performance of non-ideal wireless PBFT and RAFT networks, but also provide important references for the future transmission of THz and mmWave signals in PBFT and RAFT networks.Comment: arXiv admin note: substantial text overlap with arXiv:2303.1575
    corecore