1,051 research outputs found
Recommended from our members
Calcineurin B-Like Proteins CBL4 and CBL10 Mediate Two Independent Salt Tolerance Pathways in Arabidopsis.
In Arabidopsis, the salt overly sensitive (SOS) pathway, consisting of calcineurin B-like protein 4 (CBL4/SOS3), CBL-interacting protein kinase 24 (CIPK24/SOS2) and SOS1, has been well defined as a crucial mechanism to control cellular ion homoeostasis by extruding Na+ to the extracellular space, thus conferring salt tolerance in plants. CBL10 also plays a critical role in salt tolerance possibly by the activation of Na+ compartmentation into the vacuole. However, the functional relationship of the SOS and CBL10-regulated processes remains unclear. Here, we analyzed the genetic interaction between CBL4 and CBL10 and found that the cbl4 cbl10 double mutant was dramatically more sensitive to salt as compared to the cbl4 and cbl10 single mutants, suggesting that CBL4 and CBL10 each directs a different salt-tolerance pathway. Furthermore, the cbl4 cbl10 and cipk24 cbl10 double mutants were more sensitive than the cipk24 single mutant, suggesting that CBL10 directs a process involving CIPK24 and other partners different from the SOS pathway. Although the cbl4 cbl10, cipk24 cbl10, and sos1 cbl10 double mutants showed comparable salt-sensitive phenotype to sos1 at the whole plant level, they all accumulated much lower Na+ as compared to sos1 under high salt conditions, suggesting that CBL10 regulates additional unknown transport processes that play distinct roles from the SOS1 in Na+ homeostasis
Short-range interaction of strongly nonlocal spatial optical solitons
A novel phenomenon is discovered that the short-range interaction between
strongly nonlocal spatial solitons depends sinusoidally on their phase
difference. The two neighbouring solitons at close proximate can be
inter-trapped via the strong nonlocality, and propagate together as a whole.
The trajectory of the propagation is a straight line with its slope controlled
by the phase difference. The experimental results carried out in nematic liquid
crystals agree quantitatively with the prediction. Our study suggests that the
phenomenon to steer optical beams by controlling the phase difference could be
used in all-optical information processing.Comment: 4 pages 6 figure
- …