23,647 research outputs found
Off-Diagonal Long-Range Order: Meissner Effect and Flux Quantization
There has been a proof by Sewell that the hypothesis of off-diagonal
long-range order in the reduced density matrix implies the Meissner
effect. We present in this note an elementary and straightforward proof that
not only the Meissner effect but also the property of magnetic flux
quantization follows from the hypothesis. It is explicitly shown that the two
phenomena are closely related, and phase coherence is the origin for both.Comment: 11 pages, Latex fil
AC electrokinetic phenomena over semiconductive surfaces: effective electric boundary conditions and their applications
Electrokinetic boundary conditions are derived for AC electrokinetic (ACEK)
phenomena over leaky dielectric (i.e., semiconducting) surfaces. Such boundary
conditions correlate the electric potentials across the
semiconductor-electrolyte interface (consisting of the electric double layer
(EDL) inside the electrolyte solutions and the space charge layer (SCL) inside
the semiconductors) under AC electric fields with arbitrary wave forms. The
present electrokinetic boundary conditions allow for evaluation of induced zeta
potential contributed by both bond charges (due to electric polarization) and
free charges (due to electric conduction) from the leaky dielectric materials.
Subsequently, we demonstrate the applications of these boundary conditions in
analyzing the ACEK phenomena around a semiconducting cylinder. It is concluded
that the flow circulations exist around the semiconducting cylinder and are
shown to be stronger under an AC field with lower frequency and around a
cylinder with higher conductivity.Comment: 29 pages, 4 figure
Disruption of the Toxoplasma gondii Parasitophorous Vacuole by IFNΞ³-Inducible Immunity-Related GTPases (IRG Proteins) Triggers Necrotic Cell Death
Toxoplasma gondii is a natural intracellular protozoal pathogen of mice and other small mammals. After infection, the parasite replicates freely in many cell types (tachyzoite stage) before undergoing a phase transition and encysting in brain and muscle (bradyzoite stage). In the mouse, early immune resistance to the tachyzoite stage is mediated by the family of interferon-inducible immunity-related GTPases (IRG proteins), but little is known of the nature of this resistance. We reported earlier that IRG proteins accumulate on intracellular vacuoles containing the pathogen, and that the vacuolar membrane subsequently ruptures. In this report, live-cell imaging microscopy has been used to follow this process and its consequences in real time. We show that the rupture of the vacuole is inevitably followed by death of the intracellular parasite, shown by its permeability to cytosolic protein markers. Death of the parasite is followed by the death of the infected cell. The death of the cell has features of pyronecrosis, including membrane permeabilisation and release of the inflammatory protein, HMGB1, but caspase-1 cleavage is not detected. This sequence of events occurs on a large scale only following infection of IFNΞ³-induced cells with an avirulent strain of T. gondii, and is reduced by expression of a dominant negative mutant IRG protein. Cells infected by virulent strains rarely undergo necrosis. We did not find autophagy to play any role in the key steps leading to the death of the parasite. We conclude that IRG proteins resist infection by avirulent T. gondii by a novel mechanism involving disruption of the vacuolar membrane, which in turn ultimately leads to the necrotic death of the infected cell
Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms
With the help of the F-basis provided by the Drinfeld twist or factorizing
F-matrix for the open XXZ spin chain with non-diagonal boundary terms, we
obtain the determinant representations of the scalar products of Bethe states
of the model.Comment: Latex file, 28 pages, based on the talk given by W. -L. Yang at
Statphys 24, Cairns, Australia, 19-23 July, 201
Bacterial Community Structure of Pinus Thunbergii Naturally Infected by the Nematode Bursaphelenchus Xylophilus
Pine wilt disease (PWD) caused by the nematode Bursaphelenchus xylophilus is a devastating disease in conifer forests in Eurasia. However, information on the effect of PWD on the host microbial community is limited. In this study, the bacterial community structure and potential function in the needles, roots, and soil of diseased pine were studied under field conditions using Illumina MiSeq coupled with Phylogenetic Investigation of Communities by Reconstruction of Unobserved states (PICRUSt) software. The results showed that the community and functional structure of healthy and diseased trees differed only in the roots and needles, respectively (p <0.05). The needles, roots, and soil formed unique bacterial community and functional structures. The abundant phyla across all samples were Proteobacteria (41.9% of total sequence), Actinobacteria (29.0%), Acidobacteria (12.2%), Bacteroidetes (4.8%), and Planctomycetes (2.1%). The bacterial community in the healthy roots was dominated by Acidobacteria, Planctomycetes, and Rhizobiales, whereas in the diseased roots, Proteobacteria, Firmicutes, and Burkholderiales were dominant. Functionally, groups involved in the cell process and genetic information processing had a higher abundance in the diseased needles, which contributed to the difference in functional structure. The results indicate that PWD can only affect the host bacteria community structure and function in certain anatomical regions of the host tree.Peer reviewe
Bacterial Community Structure of Pinus Thunbergii Naturally Infected by the Nematode Bursaphelenchus Xylophilus
Pine wilt disease (PWD) caused by the nematode Bursaphelenchus xylophilus is a devastating disease in conifer forests in Eurasia. However, information on the effect of PWD on the host microbial community is limited. In this study, the bacterial community structure and potential function in the needles, roots, and soil of diseased pine were studied under field conditions using Illumina MiSeq coupled with Phylogenetic Investigation of Communities by Reconstruction of Unobserved states (PICRUSt) software. The results showed that the community and functional structure of healthy and diseased trees differed only in the roots and needles, respectively (p < 0.05). The needles, roots, and soil formed unique bacterial community and functional structures. The abundant phyla across all samples were Proteobacteria (41.9% of total sequence), Actinobacteria (29.0%), Acidobacteria (12.2%), Bacteroidetes (4.8%), and Planctomycetes (2.1%). The bacterial community in the healthy roots was dominated by Acidobacteria, Planctomycetes, and Rhizobiales, whereas in the diseased roots, Proteobacteria, Firmicutes, and Burkholderiales were dominant. Functionally, groups involved in the cell process and genetic information processing had a higher abundance in the diseased needles, which contributed to the difference in functional structure. The results indicate that PWD can only affect the host bacteria community structure and function in certain anatomical regions of the host tree
Bacterial Community Structure of Pinus Thunbergii Naturally Infected by the Nematode Bursaphelenchus Xylophilus
Pine wilt disease (PWD) caused by the nematode Bursaphelenchus xylophilus is a devastating disease in conifer forests in Eurasia. However, information on the effect of PWD on the host microbial community is limited. In this study, the bacterial community structure and potential function in the needles, roots, and soil of diseased pine were studied under field conditions using Illumina MiSeq coupled with Phylogenetic Investigation of Communities by Reconstruction of Unobserved states (PICRUSt) software. The results showed that the community and functional structure of healthy and diseased trees differed only in the roots and needles, respectively (p < 0.05). The needles, roots, and soil formed unique bacterial community and functional structures. The abundant phyla across all samples were Proteobacteria (41.9% of total sequence), Actinobacteria (29.0%), Acidobacteria (12.2%), Bacteroidetes (4.8%), and Planctomycetes (2.1%). The bacterial community in the healthy roots was dominated by Acidobacteria, Planctomycetes, and Rhizobiales, whereas in the diseased roots, Proteobacteria, Firmicutes, and Burkholderiales were dominant. Functionally, groups involved in the cell process and genetic information processing had a higher abundance in the diseased needles, which contributed to the difference in functional structure. The results indicate that PWD can only affect the host bacteria community structure and function in certain anatomical regions of the host tree
Deep Burst Denoising
Noise is an inherent issue of low-light image capture, one which is
exacerbated on mobile devices due to their narrow apertures and small sensors.
One strategy for mitigating noise in a low-light situation is to increase the
shutter time of the camera, thus allowing each photosite to integrate more
light and decrease noise variance. However, there are two downsides of long
exposures: (a) bright regions can exceed the sensor range, and (b) camera and
scene motion will result in blurred images. Another way of gathering more light
is to capture multiple short (thus noisy) frames in a "burst" and intelligently
integrate the content, thus avoiding the above downsides. In this paper, we use
the burst-capture strategy and implement the intelligent integration via a
recurrent fully convolutional deep neural net (CNN). We build our novel,
multiframe architecture to be a simple addition to any single frame denoising
model, and design to handle an arbitrary number of noisy input frames. We show
that it achieves state of the art denoising results on our burst dataset,
improving on the best published multi-frame techniques, such as VBM4D and
FlexISP. Finally, we explore other applications of image enhancement by
integrating content from multiple frames and demonstrate that our DNN
architecture generalizes well to image super-resolution
New Spinor Field Realizations of the Non-Critical String
We investigate the new spinor field realizations of the algebra,
making use of the fact that the algebra can be linearized by the
addition of a spin-1 current. We then use these new realizations to build the
nilpotent Becchi-Rouet-Stora--Tyutin (BRST) charges of the spinor non-critical
string.Comment: 8 pages, no figures, revtex4 style, accepted by Chin. Phys. Let
Localisation and Mislocalisation of the Interferon-Inducible Immunity-Related GTPase, Irgm1 (LRG-47) in Mouse Cells
Irgm1 (LRG-47) is an interferon-inducible Golgi membrane associated GTPase of the mouse whose disruption causes susceptibility to many different intracellular pathogens. Irgm1 has been variously interpreted as a regulator of homologous effector GTPases of the IRG family, a regulator of phagosome maturation and as an initiator of autophagy in interferon-induced cells. We find that endogenous Irgm1 localises to late endosomal and lysosomal compartments in addition to the Golgi membranes. The targeting motif known to be required for Golgi localisation is surprisingly also required for endolysosomal localisation. However, unlike Golgi localisation, localisation to the endolysosomal system also requires the functional integrity of the nucleotide binding site, and thus probably reflects transient activation. Golgi localisation is lost when Irgm1 is tagged at either N- or C-termini with EGFP, while localisation to the endolysosomal system is relatively favoured. N-terminally tagged Irgm1 localises predominantly to early endosomes, while C-terminally tagged Irgm1 localises to late endosomes and lysosomes. Both these anomalous distributions are reversed by inactivation of the nucleotide binding site, and the tagged proteins both revert to Golgi membrane localisation. Irgm1 is the first IRG protein to be found associated with the endolysosomal membrane system in addition to either Golgi (Irgm1 and Irgm2) or ER (Irgm3) membranes, and we interpret the result to be in favour of a regulatory function of IRGM proteins at cellular membrane systems. In future analyses it should be borne in mind that tagging of Irgm1 leads to loss of Golgi localisation and enhanced localisation on endolysosomal membranes, probably as a result of constitutive activation
- β¦