2,575 research outputs found

    Multi-population genetic algorithms with immigrants scheme for dynamic shortest path routing problems in mobile ad hoc networks

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2010.The static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile ad hoc network (MANET), wireless mesh network, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, that is, the network topology changes over time due to energy conservation or node mobility. Therefore, the SP problem turns out to be a dynamic optimization problem in mobile wireless networks. In this paper, we propose to use multi-population GAs with immigrants scheme to solve the dynamic SP problem in MANETs which is the representative of new generation wireless networks. The experimental results show that the proposed GAs can quickly adapt to the environmental changes (i.e., the network topology change) and produce good solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council(EPSRC) of UK under Grant EP/E060722/1

    Health Misinformation on Social Media: A Literature Review

    Get PDF
    Health misinformation on social media is considered as a major public concern. This study evaluates the current state of this issue by conducting a systematic literature review. Based on a stepwise literature search and selection procedure, we have identified 21 articles relevant to the topic of health misinformation on social media. We find that health misinformation on social media is a new and emerging topic in multiple disciplines. One very important insight of this review is that most studies are theoretical and exploratory in nature. There is only a small number of studies have solid theoretical foundations. Finally, we discuss the implication of the literature review for future research

    When Socialization Goes Wrong: Understanding the We-Intention to Participate in Collective Trolling in Virtual Communities

    Get PDF
    Although collective trolling poses a growing threat to both individuals and virtual community owners, the information systems (IS) literature lacks a rich theorization of this phenomenon. To address the research gaps, we introduce the concept of we-intention to capture the collective nature of collective trolling in virtual communities. We also integrate the social identity model of deindividuation effects (SIDE) and situational action theory to invoke the sociotechnical perspective in theorizing collective trolling in virtual communities. The objective of this study is to use the sociotechnical perspective to understand the we-intention to participate in collective trolling in virtual communities. We test our proposed model using data gathered from 377 Reddit users. Our moderated mediation analysis elaborates how technical elements (i.e., anonymity of self and anonymity of others) influence the we-intention to participate in collective trolling via individual-based social elements (i.e., perceived online disinhibition and social identity), with an environment-based social element (i.e., the absence of capable guardianship) as a boundary condition. We contribute to research by explaining collective trolling in virtual communities from the group-referent intentional action perspective and sociotechnical perspective. We also offer practical insights into ways to combat collective trolling in virtual communities

    Remarks on Hawking radiation as tunneling from the BTZ black holes

    Full text link
    Hawking radiation viewed as a semiclassical tunneling process from the event horizon of the (2 + 1)-dimensional rotating BTZ black hole is carefully reexamined by taking into account not only the energy conservation but also the conservation of angular momentum when the effect of the emitted particle's self-gravitation is incorporated. In contrast to previous analysis of this issue in the literature, our result obtained here fits well to the Kraus-Parikh-Wilczek's universal conclusion without any modification to the Bekenstein-Hawking area-entropy formulae of the BTZ black hole.Comment: 12pages, no figure, use JHEP3.cls. Version better than published one in JHE

    "Charged" Particle's Tunneling from Rotating Black Holes

    Full text link
    The behavior of a scalar field theory near the event horizon in a rotating black hole background can be effectively described by a two dimensional field theory in a gauge field background. Based on this fact, we proposal that the quantum tunneling from rotating black hole can be treated as "charged" particle' s tunneling process in its effectively two dimensional metric. Using this viewpoint and considering the corresponding "gauge charge" conservation, we calculate the non-thermal tunneling rate of Kerr black hole and Myers-Perry black hole, and results are consistent with Parikh-Wilczek's original result for spherically symmetric black holes. Especially for Myers-Perry black hole which has multi-rotation parameters, our calculation fills in the gap existing in the literature applying Parikh-Wilczek's tunneling method to various types black holes. Our derivation further illuminates the essential role of effective gauge symmetry in Hawking radiation from rotating black holes.Comment: 15 pages, no figure; any comments are welcome

    Density Effect on Hadronization of a Quark Plasma

    Full text link
    The hadronization cross section in a quark plasma at finite temperature and density is calculated in the framework of Nambu--Jona-lasinio model with explicit chiral symmetry breaking. In apposition to the familiar temperature effect, the quark plasma at high density begins to hadronize suddenly. It leads to a sudden and strong increase of final state pions in relativistic heavy ion collisions which may be considered as a clear signature of chiral symmetry restoration.Comment: Latex2e, 11 pages, 7 Postscript figures, submitted to Phys. Rev.

    Entropy spectrum of a Kerr anti-de Sitter black hole

    Full text link
    The entropy spectrum of a spherically symmetric black hole was derived without the quasinormal modes in the work of Majhi and Vagenas. Extending this work to rotating black holes, we quantize the entropy and the horizon area of a Kerr anti-de Sitter black hole by two methods. The spectra of entropy and area are obtained via the Bohr-Sommerfeld quantization rule and the adiabatic invariance in the first way. By addressing the wave function of emitted (absorbed) particles, the entropy and the area are quantized in the second one. Both results show that the entropy and the area spectra are equally spaced.Comment: Accepted for publication in The European Physical Journal C, Volume 72, Issue

    Ovule cell wall composition is a maternal determinant of grain size in barley

    Get PDF
    OnlinePublIn cereal species, seed and grain size is influenced by growth of the ovule integuments (seed coat), the spikelet hull (lemma and palea) and the filial endosperm. It has remained unclear whether a highly conserved ovule tissue, the nucellus, has any impact on grain size. Immunolabelling revealed that the barley nucellus comprises two distinct cell types that differ in terms of cell wall homogalacturonan (HG) accumulation. Transcriptional profiling of the nucellus identified two pectin methylesterase genes, OVULE PECTIN MODIFIER 1 (OPM1) and OPM2, which are expressed in the ovule but absent from the seed. Ovules from an opm1 opm2 mutant, and plants expressing an ovule-specific pectin methylesterase inhibitor (PMEI), exhibit reduced HG accumulation. This results in changes to ovule cell size and shape, and ovules that are longer than wild-type controls. At grain maturity, this is manifested as significantly longer grain. These findings indicate that cell wall composition during ovule development acts to limit ovule and seed growth. The investigation of ovule PME and PMEI activity reveals an unexpected role of maternal tissues in controlling grain growth prior to fertilisation, one that has been lacking from models exploring improvements in grain size.Xiujuan Yang, Laura G. Wilkinson, Matthew K. Aubert, Kelly Houston, Neil J. Shirley, and Matthew R. Tucke

    Temperature-dependent Raman spectroscopy in BaRuO3_3 systems

    Full text link
    We investigated the temperature-dependence of the Raman spectra of a nine-layer BaRuO3_3 single crystal and a four-layer BaRuO3_3 epitaxial film, which show pseudogap formations in their metallic states. From the polarized and depolarized spectra, the observed phonon modes are assigned properly according to the predictions of group theory analysis. In both compounds, with decreasing temperature, while A1gA_{1g} modes show a strong hardening, EgE_g (or E2gE_{2g}) modes experience a softening or no significant shift. Their different temperature-dependent behaviors could be related to a direct Ru metal-bonding through the face-sharing of RuO6_6. It is also observed that another E2gE_{2g} mode of the oxygen participating in the face-sharing becomes split at low temperatures in the four layer BaRuO3_3 . And, the temperature-dependence of the Raman continua between 250 \sim 600 cm1^{-1} is strongly correlated to the square of the plasma frequency. Our observations imply that there should be a structural instability in the face-shared structure, which could be closely related to the pseudogap formation of BaRuO3_3 systems.Comment: 8 pages, 6 figures. to be published in Phys. Rev.

    Hydrogen production from high temperature steam catalytic gasification of bio-char

    Get PDF
    Hydrogen production from the catalytic steam gasification of bio-char derived from the pyrolysis of sugar cane bagasse has been investigated in relation to gasification temperature up to 1050 °C, steam flow rate from 6 to 25 ml h−1 and type of Nickel catalyst. The catalysts used were Ni-dolomite, Ni–MgO and Ni–Al2O3, all with 10% nickel loading. The hydrogen yield in the absence of a catalyst at a gasification temperature of 950 °C was 100.97 mmol g−1 of bagasse char. However, the presence of the Ni–MgO and Ni–Al2O3 catalysts produced significantly improved hydrogen yields of 178.75 and 187.25 mmol g−1 of bagasse char respectively at 950 °C. The hydrogen yield from the char with the Ni-dolomite only showed a modest increase in hydrogen yield. The influence of gasification temperature showed that the optimum temperature to obtain the highest hydrogen yield was 950 °C. Increase in gasification temperature from 750 to 950 °C significantly increased hydrogen yield from 45.30 to 187.25 mmol g−1 of bagasse char at 950 °C, but was followed by a decrease in yield at 1050 °C. The influence of steam flow rate showed that with the increase in steam flow rate from 6 to 15 ml h−1 hydrogen yield was increased from 187.25 to 208.41 mmol g−1 of bagasse char. Further increase in steam flow rate resulted in a decrease in hydrogen yield
    corecore