220,044 research outputs found
Roles of tumor suppressors in regulating tumor-associated inflammation.
Loss or silencing of tumor suppressors (TSs) promotes neoplastic transformation and malignant progression. To date, most work on TS has focused on their cell autonomous effects. Recent evidence, however, demonstrates an important noncell autonomous role for TS in the control of tumor-associated inflammation. We review evidence from clinical data sets and mouse model studies demonstrating enhanced inflammation and altered tumor microenvironment (TME) upon TS inactivation. We discuss clinical correlations between tumor-associated inflammation and inactivation of TS, and their therapeutic implications. This review sets forth the concept that TS can also suppress tumor-associated inflammation, a concept that provides new insights into tumor-host interactions. We also propose that in some cases the loss of TS function in cancer can be overcome through inhibition of the resulting inflammatory response, regardless whether it is a direct or an indirect consequence of TS loss
Dynamics of particle-particle collisions in a viscous liquid
When two solid spheres collide in a liquid, the dynamic collision process is slowed by viscous dissipation and the increased pressure in the interparticle gap as compared with dry collisions. This paper investigates liquid-immersed head-on and oblique collisions, which complements previously investigated particle-on-wall immersed collisions. By defining the normal from the line of centers at contact, the experimental findings support the decomposition of an oblique collision into its normal and tangential components of motion. The normal relative particle motion is characterized by an effective coefficient of restitution and a binary Stokes number with a correlation that follows the particle-wall results. The tangential motion is described by a collision model using a normal coefficient of restitution and a friction coefficient that are modified for the liquid effects
Angular momentum transport and element mixing in the stellar interior I. Application to the rotating Sun
The purpose of this work was to obtain diffusion coefficient for the magnetic
angular momentum transport and material transport in a rotating solar model. We
assumed that the transport of both angular momentum and chemical elements
caused by magnetic fields could be treated as a diffusion process. The
diffusion coefficient depends on the stellar radius, angular velocity, and the
configuration of magnetic fields. By using of this coefficient, it is found
that our model becomes more consistent with the helioseismic results of total
angular momentum, angular momentum density, and the rotation rate in a
radiative region than the one without magnetic fields. Not only can the
magnetic fields redistribute angular momentum efficiently, but they can also
strengthen the coupling between the radiative and convective zones. As a
result, the sharp gradient of the rotation rate is reduced at the bottom of the
convective zone. The thickness of the layer of sharp radial change in the
rotation rate is about 0.036 in our model. Furthermore, the
difference of the sound-speed square between the seismic Sun and the model is
improved by mixing the material that is associated with angular momentum
transport.Comment: 8 pages, 2 figure
Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems
Nanomechanical resonators can now be realized that achieve fundamental resonance frequencies exceeding 1 GHz, with quality factors (Q) in the range 10^3<=Q<=10^5. The minuscule active masses of these devices, in conjunction with their high Qs, translate into unprecedented inertial mass sensitivities. This makes them natural candidates for a variety of mass sensing applications. Here we evaluate the ultimate mass sensitivity limits for nanomechanical resonators operating in vacuo that are imposed by a number of fundamental physical noise processes. Our analyses indicate that nanomechanical resonators offer immense potential for mass sensing—ultimately with resolution at the level of individual molecules
Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages
In this paper we present the thermal and mechanical analysis of high-power
light-emitting diodes (LEDs) with ceramic packages. Transient thermal
measurements and thermo-mechanical simulation were performed to study the
thermal and mechanical characteristics of ceramic packages. Thermal resistance
from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by
replacing plastic mould to ceramic mould for LED packages. Higher level of
thermo-mechanical stresses in the chip were found for LEDs with ceramic
packages despite of less mismatching coefficients of thermal expansion
comparing with plastic packages. The results suggest that the thermal
performance of LEDs can be improved by using ceramic packages, but the mounting
process of the high power LEDs with ceramic packages is critically important
and should be in charge of delaminating interface layers in the packages.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
- …