6,134 research outputs found

    Molecular characterization of HbEREBP2, a jasmonateresponsive transcription factor from Hevea brasiliensis Muell. Arg.

    Get PDF
    Transcription factors of AP2/ERF superfamily are generally involved in defense responses of plants to biotic and abiotic stresses. Although, defense proteins are present in abundance in laticifers of rubber tree, little is known about their transcriptional regulation. In this study, a full length cDNA, referred to as HbEREBP2 was characterized by means of bioinformatic analysis and quantitative real-time RT-PCR. The HbEREBP2 was 786-bp in length and contained a 480-bp open reading frame (ORF) encoding a protein of 159 amino acid residues. Bioinformatic analysis showed that the deduced amino acid sequence of HbEREBP2 had a specific domain of AP2 superfamily and shared relative high identity with members of CBF/DREB subfamily from different plant species. Quantitative real-time RT-PCR revealed that methyl jasmonate was more effective than ethylene and rapidly than mechanical wounding on upregulating HbEREBP2 expression. The results suggest that HbEREBP2 may be involved in the regulation of jasmonate-mediated defense responses in laticifers of rubber tree.Key words: Hevea brasiliensis, Laticifer, defense proteins, AP2/ERF transcription factor, Methyl jasmonates, Ethephon, mechanical wounding

    Form factors at strong coupling via a Y-system

    Full text link
    We compute form factors in planar N=4 Super Yang-Mills at strong coupling. Namely we consider the overlap between an operator insertion and 2n gluons. Through the gauge/string duality these are given by minimal surfaces in AdS space. The surfaces end on an infinite periodic sequence of null segments at the boundary of AdS. We consider surfaces that can be embedded in AdS_3. We derive set of functional equations for the cross ratios as functions of the spectral parameter. These equations are of the form of a Y-system. The integral form of the Y-system has Thermodynamics Bethe Ansatz form. The area is given by the free energy of the TBA system or critical value of Yang-Yang functional. We consider a restricted set of operators which have small conformal dimension

    Form Factors in N=4 Super Yang-Mills and Periodic Wilson Loops

    Full text link
    We calculate form factors of half-BPS operators in N=4 super Yang-Mills theory at tree level and one loop using novel applications of recursion relations and unitarity. In particular, we determine the expression of the one-loop form factors with two scalars and an arbitrary number of positive-helicity gluons. These quantities resemble closely the MHV scattering amplitudes, including holomorphicity of the tree-level form factor, and the expansion in terms of two-mass easy box functions of the one-loop result. Next, we compare our result for these form factors to the calculation of a particular periodic Wilson loop at one loop, finding agreement. This suggests a novel duality relating form factors to periodic Wilson loops.Comment: 26 pages, 10 figures. v2: typos fixed, comments adde

    A New 2d/4d Duality via Integrability

    Full text link
    We prove a duality, recently conjectured in arXiv:1103.5726, which relates the F-terms of supersymmetric gauge theories defined in two and four dimensions respectively. The proof proceeds by a saddle point analysis of the four-dimensional partition function in the Nekrasov-Shatashvili limit. At special quantized values of the Coulomb branch moduli, the saddle point condition becomes the Bethe Ansatz Equation of the SL(2) Heisenberg spin chain which coincides with the F-term equation of the dual two-dimensional theory. The on-shell values of the superpotential in the two theories are shown to coincide in corresponding vacua. We also identify two-dimensional duals for a large set of quiver gauge theories in four dimensions and generalize our proof to these cases.Comment: 19 pages, 2 figures, minor corrections and references adde

    TBA for non-perturbative moduli spaces

    Get PDF
    Recently, an exact description of instanton corrections to the moduli spaces of 4d N=2 supersymmetric gauge theories compactified on a circle and Calabi-Yau compactifications of Type II superstring theories was found. The equations determining the instanton contributions turn out to have the form of Thermodynamic Bethe Ansatz. We explore further this relation and, in particular, we identify the contact potential of quaternionic string moduli space with the free energy of the integrable system and the Kahler potential of the gauge theory moduli space with the Yang-Yang functional. We also show that the corresponding S-matrix satisfies all usual constraints of 2d integrable models, including crossing and bootstrap, and derive the associated Y-system. Surprisingly, in the simplest case the Y-system is described by the MacMahon function relevant for crystal melting and topological strings.Comment: 25 pages, 1 figur

    Mammalian cell growth dynamics in mitosis

    Get PDF
    The extent and dynamics of animal cell biomass accumulation during mitosis are unknown, primarily because growth has not been quantified with sufficient precision and temporal resolution. Using the suspended microchannel resonator and protein synthesis assays, we quantify mass accumulation and translation rates between mitotic stages on a single-cell level. For various animal cell types, growth rates in prophase are commensurate with or higher than interphase growth rates. Growth is only stopped as cells approach metaphase-to-anaphase transition and growth resumes in late cytokinesis. Mitotic arrests stop growth independently of arresting mechanism. For mouse lymphoblast cells, growth in prophase is promoted by CDK1 through increased phosphorylation of 4E-BP1 and cap-dependent protein synthesis. Inhibition of CDK1-driven mitotic translation reduces daughter cell growth. Overall, our measurements counter the traditional dogma that growth during mitosis is negligible and provide insight into antimitotic cancer chemotherapies

    Dual Functional Ultrafiltration Membranes with Enzymatic Digestion and Thermo-Responsivity for Protein Self-Cleaning

    Get PDF
    Controlling surface⁻protein interaction during wastewater treatment is the key motivation for developing functionally modified membranes. A new biocatalytic thermo-responsive poly vinylidene fluoride (PVDF)/nylon-6,6/poly(N-isopropylacrylamide)(PNIPAAm) ultrafiltration membrane was fabricated to achieve dual functionality of protein-digestion and thermo-responsive self-cleaning. The PVDF/nylon-6,6/PNIPAAm composite membranes were constructed by integrating a hydrophobic PVDF cast layer and hydrophilic nylon-6,6/PNIPAAm nanofiber layer on to which trypsin was covalently immobilized. The enzyme immobilization density on the membrane surface decreased with increasing PNIPAAm concentration, due to the decreased number of amine functional sites. An ultrafiltration study was performed using the synthetic model solution containing BSA/NaCl/CaCl2, where the PNIPAAm containing biocatalytic membranes demonstrated a combined effect of enzymatic and thermo-switchable self-cleaning. The membrane without PNIPAAm revealed superior fouling resistance and self-cleaning with an RPD of 22%, compared to membranes with 2 and 4 wt % PNIPAAm with 26% and 33% RPD, respectively, after an intermediate temperature cleaning at 50 °C, indicating that higher enzyme density offers more efficient self-cleaning than the combined effect of enzyme and PNIPAAm at low concentration. The conformational volume phase transition of PNIPAAm did not affect the stability of immobilized trypsin on membrane surfaces. Such novel surface engineering design offer a promising route to mitigate surface⁻protein contamination in wastewater applications

    The role of evolutive elastic properties in the performance of a sheet formed spring applied in multimedia car industry

    Get PDF
    The manufacturing process and the behavior of a sheet formed spring manufactured from an aluminum sheet is described and investigated in this work considering the specifications for the in-service conditions. The sheet formed spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multi-step forming process and in working conditions.This research was sponsored by:a) Portugal Incentive System for Research and Technological Development. Project in co-promotion no 36265/2013 (Project HMIExcel - 2013-2015), andb) FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    Development and evaluation of intraoperative ultrasound segmentation with negative image frames and multiple observer labels

    Get PDF
    When developing deep neural networks for segmenting intraoperative ultrasound images, several practical issues are encountered frequently, such as the presence of ultrasound frames that do not contain regions of interest and the high variance in ground-truth labels. In this study, we evaluate the utility of a pre-screening classification network prior to the segmentation network. Experimental results demonstrate that such a classifier, minimising frame classification errors, was able to directly impact the number of false positive and false negative frames. Importantly, the segmentation accuracy on the classifier-selected frames, that would be segmented, remains comparable to or better than those from standalone segmentation networks. Interestingly, the efficacy of the pre-screening classifier was affected by the sampling methods for training labels from multiple observers, a seemingly independent problem. We show experimentally that a previously proposed approach, combining random sampling and consensus labels, may need to be adapted to perform well in our application. Furthermore, this work aims to share practical experience in developing a machine learning application that assists highly variable interventional imaging for prostate cancer patients, to present robust and reproducible open-source implementations, and to report a set of comprehensive results and analysis comparing these practical, yet important, options in a real-world clinical application

    Classical conformal blocks from TBA for the elliptic Calogero-Moser system

    Get PDF
    The so-called Poghossian identities connecting the toric and spherical blocks, the AGT relation on the torus and the Nekrasov-Shatashvili formula for the elliptic Calogero-Moser Yang's (eCMY) functional are used to derive certain expressions for the classical 4-point block on the sphere. The main motivation for this line of research is the longstanding open problem of uniformization of the 4-punctured Riemann sphere, where the 4-point classical block plays a crucial role. It is found that the obtained representation for certain 4-point classical blocks implies the relation between the accessory parameter of the Fuchsian uniformization of the 4-punctured sphere and the eCMY functional. Additionally, a relation between the 4-point classical block and the Nf=4N_f=4, SU(2){\sf SU(2)} twisted superpotential is found and further used to re-derive the instanton sector of the Seiberg-Witten prepotential of the Nf=4N_f=4, SU(2){\sf SU(2)} supersymmetric gauge theory from the classical block.Comment: 25 pages, no figures, latex+JHEP3, published versio
    corecore