5,335 research outputs found

    Politics, geological past, and the future of earth

    Get PDF
    From the 1940s, new technologies, like carbon dating, ice- and sea-core drilling, and pollen analysis not only vastly expanded time horizons in geophysical and climatological research, but also pinpointed past events on a newly historical timescale. Using natural proxy indicators, these studies brought to light a series of globally disruptive events in geological time, for example, volcanic eruptions of previously unknown scale and types that had also an impact on the Earth’s climate. The past became discrete. Knowing more about the past also meant knowing more about possible futures, given that some catastrophic events have occurred repeatedly or have become increasingly predictable with the help of computer modeling. This meant that scientists' claims about the future of the earth increasingly came to interfere with politics and with traditional economic planning. The paper argues that the “new” past has come to weigh in two ways on the present and the future. First, it dwarfed the human time scale, thus in-creasing the challenge of dealing with heterogeneous time scales. Second, prehis-toric past events came to take on political significance. The deep past became part of political history, and thus of politics

    Asymmetry Parameter of the K1(1270,1400)K_{1} (1270, 1400) by Analyzing the BK1ννˉB\to K_{1}\nu \bar{\nu} Transition Form Factors within QCD

    Full text link
    Separating the mixture of the K1(1270) K_{1}(1270) and K1(1400)K_{1}(1400) states, the BK1(1270,1400)ννˉB\to K_{1}(1270, 1400)\nu\bar{\nu} transition form factors are calculated in the three-point QCD sum rules approach. The longitudinal, transverse and total decay widths as well as the asymmetry parameter, characterizing the polarization of the axial K1(1270,1400)K_{1}(1270, 1400) and the branching ratio for these decays are evaluated.Comment: 25 pages, 3 figures, 3 table

    Compressibility and Electronic Structure of MgB2 up to 8 GPa

    Full text link
    The lattice parameters of MgB2 up to pressures of 8 GPa were determined using high-resolution x-ray powder diffraction in a diamond anvil cell. The bulk modulus, B0, was determined to be 151 +-5 GPa. Both experimental and first-principles calculations indicate nearly isotropic mechanical behavior under pressure. This small anisotropy is in contrast to the 2 dimensional nature of the boron pi states. The pressure dependence of the density of states at the Fermi level and a reasonable value for the average phonon frequency account within the context of BCS theory for the reduction of Tc under pressure.Comment: REVTeX file. 4 pages, 4 figure

    Analysis of Built Environment Influence on Pedestrian route choice behavior in Dutch Design Week using GPS Data

    Get PDF
    Visitors not only have specific destinations targeting the Dutch Design Week (DDW) exhibitions distributed all over the city, but also visit the city in between exhibition activities. The mixed environment makes modeling behavior of DDW visitors more complex than shoppers and tourisms only. This research pays special attention to the influence of built environment on pedestrian route choice. The built environment includes building and transportation infrastructure. GPS tracking data and social demographic information were collected during the event. Multinomial logit model and path size logit model are used to analysis route choice behavior. The results show that some built environment factors have significant influence on route choice. Shops are more attractive for aged visitors. Females prefer shorter routes more. In big event, the alternative routes with more sharing links could increase the possibility to choose

    Hard-Loop Effective Action for Anisotropic Plasmas

    Full text link
    We generalize the hard-thermal-loop effective action of the equilibrium quark-gluon plasma to a non-equilibrium system which is space-time homogeneous but for which the parton momentum distribution is anisotropic. We show that the manifestly gauge-invariant Braaten-Pisarski form of the effective action can be straightforwardly generalized and we verify that it then generates all n-point functions following from collisionless gauge-covariant transport theory for a homogeneous anisotropic plasma. On the other hand, the Taylor-Wong form of the hard-thermal-loop effective action has a more complicated generalization to the anisotropic case. Already in the simplest case of anisotropic distribution functions, it involves an additional term that is gauge invariant by itself, but nontrivial also in the static limit.Comment: 12 pages. Version 3: typo in (15) corrected, note added discussing metric conventions use

    Analytical expressions for the luminescence of dilute quaternary InAs(N,Sb) semiconductors

    Get PDF
    In this paper, we calculate the luminescence of the dilute quaternary InAs(N,Sb). The incorporation of N leads to a reduction of the energy gap of the host InAs and Sb acts as a surfactant, improves the N incorporation and further reduces the bandgap. This is thus extremely relevant for devices operating in the mid-infrared (MIR) spectral range from 3 to 5 μm. In order to describe this system, the theory starts with the band anticrossing model applied to both conduction and the valence band to generate inputs for analytical approximations that lead to luminescence spectra, including plasma screening, bandgap renormalization and excitonic enhancements. Direct application of the equations leads to good agreement with some recent experimental data

    Kahler moduli double inflation

    Full text link
    We show that double inflation is naturally realized in K\"ahler moduli inflation, which is caused by moduli associated with string compactification. We find that there is a small coupling between the two inflatons which leads to amplification of perturbations through parametric resonance in the intermediate stage of double inflation. This results in the appearance of a peak in the power spectrum of the primordial curvature perturbation. We numerically calculate the power spectrum and show that the power spectrum can have a peak on observationally interesing scales. We also compute the TT-spectrum of CMB based on the power spectrum with a peak and see that it better fits WMAP 7-years data.Comment: 21 pages, 8 figure

    Optical properties of the pseudogap state in underdoped cuprates

    Full text link
    Recent optical measurements of deeply underdoped cuprates have revealed that a coherent Drude response persists well below the end of the superconducting dome. In addition, no large increase in optical effective mass has been observed, even at dopings as low as 1%. We show that this behavior is consistent with the resonating valence bond spin-liquid model proposed by Yang, Rice, and Zhang. In this model, the overall reduction in optical conductivity in the approach to the Mott insulating state is caused not by an increase in effective mass, but by a Gutzwiller factor, which describes decreased coherence due to correlations, and by a shrinking of the Fermi surface, which decreases the number of available charge carriers. We also show that in this model, the pseudogap does not modify the low-temperature, low-frequency behavior, though the magnitude of the conductivity is greatly reduced by the Gutzwiller factor. Similarly, the profile of the temperature dependence of the microwave conductivity is largely unchanged in shape, but the Gutzwiller factor is essential in understanding the observed difference in magnitude between ortho-I and -II YBa2_2Cu3_3Oy_y.Comment: 9 pages, 6 figures, submitted to Eur. Phys. J.
    corecore