95,200 research outputs found

    An Online Approach to Dynamic Channel Access and Transmission Scheduling

    Full text link
    Making judicious channel access and transmission scheduling decisions is essential for improving performance as well as energy and spectral efficiency in multichannel wireless systems. This problem has been a subject of extensive study in the past decade, and the resulting dynamic and opportunistic channel access schemes can bring potentially significant improvement over traditional schemes. However, a common and severe limitation of these dynamic schemes is that they almost always require some form of a priori knowledge of the channel statistics. A natural remedy is a learning framework, which has also been extensively studied in the same context, but a typical learning algorithm in this literature seeks only the best static policy, with performance measured by weak regret, rather than learning a good dynamic channel access policy. There is thus a clear disconnect between what an optimal channel access policy can achieve with known channel statistics that actively exploits temporal, spatial and spectral diversity, and what a typical existing learning algorithm aims for, which is the static use of a single channel devoid of diversity gain. In this paper we bridge this gap by designing learning algorithms that track known optimal or sub-optimal dynamic channel access and transmission scheduling policies, thereby yielding performance measured by a form of strong regret, the accumulated difference between the reward returned by an optimal solution when a priori information is available and that by our online algorithm. We do so in the context of two specific algorithms that appeared in [1] and [2], respectively, the former for a multiuser single-channel setting and the latter for a single-user multichannel setting. In both cases we show that our algorithms achieve sub-linear regret uniform in time and outperforms the standard weak-regret learning algorithms.Comment: 10 pages, to appear in MobiHoc 201

    Realization of universal quantum cloning with SQUID qubits in a cavity

    Full text link
    We propose a scheme to realize 121\to 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits, embeded in a high-Q cavity. CNOT operations are derived to present our scheme, and the two-photon Raman resonance processes are used to increase the operation rate. Compared with previous works, our scheme has advantages in the experimental realization and further utilization.Comment: 4 pages, 2 figure

    Zero Modes of Matter Fields on Scalar Flat Thick Branes

    Full text link
    Zero modes of various matters with spin 0, 1 and 1/2 on a class of scalar flat thick branes are discussed in this paper. We show that scalar field with spin 0 is localized on all thick branes without additional condition, while spin 1 vector field is not localized. In addition, for spin 1/2 fermionic field, the zero mode is localized on the branes under certain conditions.Comment: 11 pages,no figure

    A semi-analytical method for nonlinear vibration of Euler-Bernoulli beams with general boundary conditions

    Get PDF
    This paper presents a new semianalytical approach for geometrically nonlinear vibration analysis of Euler-Bernoulli beams with different boundary conditions. The method makes use of Linstedt-Poincaré perturbation technique to transform the nonlinear governing equations into a linear differential equation system, whose solutions are then sought through the use of differential quadrature approximation in space domain and an analytical series expansion in time domain. Validation of the present method is conducted in numerical examples through direct comparisons with existing solutions, showing that the proposed semianalytical method has excellent convergence and can give very accurate results at a long time interval
    corecore