90,125 research outputs found

    Probing the low-x structure of nuclear matter with diffractive hadron production in pA collisions

    Get PDF
    We argue that hadron production in coherent diffraction of proton on a heavy nucleus provides a very sensitive probe of the low-x QCD dynamics. This process probes the BFKL dynamics in proton and the non-linear gluon evolution in nucleus. We calculate the diffractive hadron production cross sections in the RHIC and LHC kinematic regions. To study the nuclear effects we introduce the diffractive nuclear modification factor. We show that unlike the nuclear modification factor for inclusive hadron production that has a very interesting dynamics at RHIC but is expected to be almost completely saturated at the LHC, the nuclear modification factor for diffractive production exhibits a non-trivial behavior both at RHIC and LHC.Comment: 18 pages, 7 figure

    Recent results from BRAHMS

    Full text link
    The BRAHMS collaboration ended its data collection program in 2006. We are now well advanced in the analysis of a comprehensive set of data that spans systems ranging in mass from p+p to Au+Au and in energy from sNN=62.4\sqrt{s_{NN}} = 62.4 to 200 GeV. Our analysis has taken two distinct paths: we explore the rapidity dependence of intermediate and high-transverse-momentum, identified-particle production, thus helping to characterize the strongly-interacting quark-gluon plasma (sQGP) formed at RHIC; we also explore particle yields at lower transverse momentum to develop a systematic understanding of bulk particle production at RHIC energies.Comment: 8 pages, 5 figures, presented at the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, "Quark Matter 2008", Jaipur, India, February 4-10, 200

    Description of spin transport and precession in spin-orbit coupling systems and a general equation of continuity

    Full text link
    By generalizing the usual current density to a matrix with respect to spin variables, a general equation of continuity satisfied by the density matrix and current density matrix has been derived. This equation holds in arbitrary spin-orbit coupling systems as long as its Hamiltonian can be expressed in terms of a power series in momentum. Thereby, the expressions of the current density matrix and a torque density matrix are obtained. The current density matrix completely describes both the usual current and spin current as well; while the torque density matrix describes the spin precession caused by a total effective magnetic field, which may include a realistic and an effective one due to the spin-orbit coupling. In contrast to the conventional definition of spin current, this expression contains an additional term if the Hamiltonian includes nonlinear spin-orbit couplings. Moreover, if the degree of the full Hamiltonian 3\geq3, then the particle current must also be modified in order to satisfy the local conservation law of number.Comment: 9 page

    High-quality Image Restoration from Partial Mixed Adaptive-Random Measurements

    Get PDF
    A novel framework to construct an efficient sensing (measurement) matrix, called mixed adaptive-random (MAR) matrix, is introduced for directly acquiring a compressed image representation. The mixed sampling (sensing) procedure hybridizes adaptive edge measurements extracted from a low-resolution image with uniform random measurements predefined for the high-resolution image to be recovered. The mixed sensing matrix seamlessly captures important information of an image, and meanwhile approximately satisfies the restricted isometry property. To recover the high-resolution image from MAR measurements, the total variation algorithm based on the compressive sensing theory is employed for solving the Lagrangian regularization problem. Both peak signal-to-noise ratio and structural similarity results demonstrate the MAR sensing framework shows much better recovery performance than the completely random sensing one. The work is particularly helpful for high-performance and lost-cost data acquisition.Comment: 16 pages, 8 figure

    Collective excitation of quantum wires and effect of spin-orbit coupling in the presence of a magnetic field along the wire

    Full text link
    The band structure of a quantum wire with the Rashba spin-orbit coupling develops a pseudogap in the presence of a magnetic field along the wire. In such a system spin mixing at the Fermi wavevectors kF-k_F and kFk_F can be different. We have investigated theoretically the collective mode of this system, and found that the velocity of this collective excitation depends sensitively on the strength of the Rashba spin-orbit interaction and magnetic field. Our result suggests that the strength of the spin-orbit interaction can be determined from the measurement of the velocity.Comment: RevTeX 4 file, 4pages, 6 eps figures. To appear in Physical Review

    HRTEM study of a new non-stoichiometric BaTiO(3-δ) structure

    Get PDF
    BaTiO3-based multilayer ceramic capacitors (MLCCs) with Ni internal electrodes are co-fired in reducing atmospheres to avoid oxidation of the electrode. Although dielectric materials are doped by acceptor, donor and amphoteric dopants to minimize the oxygen vacancy content, there is still a large concentration of oxygen vacancies that are accommodated in the BaTiO3 active layers. In general, ABO3 perovskites demonstrates a strong ability to accommodate the oxygen vacancies and maintain a regular pseudo-cubic structure. Oxygen deficient barium titanate can be transformed to a hexagonal polymorph (h-BT) at high temperatures1,2. In this paper, we report the new modulated and long range ordered structures of non-stoichiometric BaTiO3-δ that are observed in the electrically degraded Ni-BaTiO3 MLCCs at low temperature

    Gluon recombination in high parton density QCD: inclusive pion production

    Get PDF
    We argue that the collinear factorization of the fragmentation functions in high energy hadron and nuclei collisions breaks down at transverse momenta kT < Qs/g due to high parton densities in the colliding hadrons and/or nuclei. We calculate, at next-to-leading order in projectile parton density and to all orders in target parton density, the double-inclusive cross section for production of a pair of gluons in the scalar J^(PC)=0^(++) channel. Using the low energy theorems of QCD we find the inclusive cross section for pi-meson production.Comment: 24 pages, 5 figure

    Gluon multiplicity in coherent diffraction of onium on a heavy nucleus

    Full text link
    We derive the cross section for the diffractive gluon production in high energy onium-nucleus collisions that includes the low-x evolution effects in the rapidity interval between the onium and the produced gluon and in the rapidity interval between the gluon and the target nucleus. We analyze our result in two limiting cases: when the onium size is much smaller than the saturation scale and when its size is much larger than the saturation scale. In the later case the gluon multiplicity is very small in the quasi-classical case and increases when the low-x evolution effects in onium become significant. We discuss the implications of our result for the RHIC, LHC and EIC phenomenology.Comment: 21 pages, 5 figure

    Spin polarization of the ν=5/2\nu=5/2 quantum Hall state

    Full text link
    We report on results of numerical studies of the spin polarization of the half filled second Landau level, which corresponds to the fractional quantum Hall state at filling factor ν=5/2\nu=5/2. Our studies are performed using both exact diagonalization and Density Matrix Renormalization Group (DMRG) on the sphere. We find that for the Coulomb interaction the exact finite-system ground state is fully polarized, for shifts corresponding to both the Moore-Read Pfaffian state and its particle-hole conjugate (anti-Pfaffian). This result is found to be robust against small variations of the interaction. The low-energy excitation spectrum is consistent with spin-wave excitations of a fully-magnetized ferromagnet.Comment: Final version published on PR
    corecore