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Abstract A novel framework to construct an efficient sensing (measurement)
matrix, called mixed adaptive-random (MAR) matrix, is introduced for di-
rectly acquiring a compressed image representation. The mixed sampling (sens-
ing) procedure hybridizes adaptive edge measurements extracted from a low-
resolution image with uniform random measurements predefined for the high-
resolution image to be recovered. The mixed sensing matrix seamlessly cap-
tures important information of an image, and meanwhile approximately satis-
fies the restricted isometry property. To recover the high-resolution image from
MAR measurements, the total variation algorithm based on the compressive
sensing theory is employed for solving the Lagrangian regularization problem.
Both peak signal-to-noise ratio and structural similarity results demonstrate
the MAR sensing framework shows much better recovery performance than
the completely random sensing one. The work is particularly helpful for high-
performance and lost-cost data acquisition.
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1 Introduction

As a novel and revolutionary sensing (sampling) paradigm, compressive sens-
ing (CS) theory has attracted much interest over the past few years. Now one
can recover certain signals and images after directly acquiring far fewer sam-
ples or measurements in comparison with massive amounts of data collected in
traditional data acquisitions [5,11,18,22]. The sensing (measurement) matrix
is essential to CS framework and must capture important information about
the object of interest.

The basic principle of CS is that sparse signals can be recovered from very
few measurements. A signal x = {xn}Nn=1 of length N is said to be sparse in
a basis space Ψ={ψn}16n6N if transform coefficients 〈x, ψn〉, 1 ≤ n ≤ N are
mostly zero; or nearly sparse in the space Ψ if a dominant portion of these
N coefficients are either zero or very close to zero. The sparsity of x in Ψ is
quantified by the number of significant (nonzero) coefficients K. The signal
can be perfectly recovered fromM = O(K log(N/K)) observations with a high
probability.

GivenM measurements y = Φx, with Φ producing the random projections,
standard CS recovers x from y by using the following constrained optimization
problem:

min
x

‖ΨTx‖p s.t. y = Φx (1)

where p is usually set to be 1 or 0, guaranteeing the sparse solution of the
vector ΨTx. ‖ ∗ ‖1 is ℓ1 norm, i.e. the summation of the absolute value of all
the elements in a vector. While ‖ ∗ ‖0 is ℓ0 norm, counting the nonzero entries
of a vector. The ℓ1 minimization problem of (1) can be solved by a linear
programming [4]. Other recovery algorithms have been recently proposed also,
including gradient projection sparse reconstruction [13], matching pursuit [24],
and iterative thresholding methods [9].

The recovery performance of CS depends significantly on the measurements
and its sensing strategies. In the literature [2] Baraniuk et al. prove that the
sensing matrix satisfying the Johnson-Lindenstrauss lemma also holds true for
the restricted isometry property (RIP) in compressive sensing. Furthermore,
a sparse random projection [17], which is almost as accurate as the conven-
tional random projection, is proposed to reduce computational cost in the
measurement process. Moreover, a structurally random matrix (SRM) [10] is
also constructed for fast and efficient CS, where the incoherence between SRM
and sparsifying transforms is comparable to that between completely random
sensing matrix and the transforms. However, all the measurement processes
above are nonadaptive, i.e., the sensing matrix is predefined or fixed. On one
hand, the predefined random sampling obeys the incoherence condition (with
the RIP). Thus it is a fascinating character of CS as well, where all the mea-
surements are equally important. On the other hand, a completely random
sampling pattern capturing information of object aimlessly becomes inefficient
for reconstructing high-resolution data. For example, the completely uniform
random sampling [3,18] in k-space for magnetic resonance imaging application
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performs worse than the nonuniform random sampling, where low frequency
components are densely sampled.

In CS, each measurement is a projection from the whole signal, which
consumes a large number of computer resources. In this paper, we sense the
signal in a different and simple way, which partially sample or “select” the
signal elements in spatial domain.

Could one acquire more important information of object in spatial (time)
domain with fewer measurements? Could one improve the completely random
sampling in spatial domain? In this work, we involve the object-dependent
and “most important” edge information of object, which can be extracted
from a low-cost sampling procedure with much lower sampling rate, into the
sensing matrix. The novel mixed adaptive-random (MAR) sensing hybridizes
adaptive edge measurements obtained from a low-resolution image with uni-
form random measurements predefined for the high-resolution image to be
reconstructed. The adaptive edge measurements can be regarded as a way of
measurement learning. This is the basic idea of the paper and also our contri-
bution. To the best of our knowledge, it is the first time we have introduced
the mixed sampling concept into the compressed partial sampling framework.
We will employ the MAR sensing matrix to directly acquire a compressed
image representation and meanwhile adopt total-variation (TV) regularizer
to recover the high-resolution image. Numerical examples demonstrate signif-
icant advantages of the MAR sensing framework over the completely random
sensing one.

2 Mixed Sampling Protocol

Fig. 1 The schematic diagram for the mixed adaptive-random sampling protocol.

Fig. 1 shows the schematic diagram for the MAR sampling protocol. Here
we assume the image f(x, y) as a function in 2D Hilbert space L(R)× L(R).
The MAR sensing matrix can be constructed by the following procedures:

Step 1, sampling a low-resolution image fl with an extremely low cost
to predict the edge information of the high-resolution image f to be recov-
ered. Regarding practical hardware implementation, the low-resolution image
requires much fewer photosensitive elements (such as 128 × 128) instead of
millions (such as 1024×1024) required in convectional data acquisition for the
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high-resolution image. Mathematically, we have

Γ (f) ≈ Γ (fp) = Γ (I(fl)) (2)

where Γ (f) = 1 for the edge pixels of f , otherwise Γ (f) = 0. The interpolation
operator I maps the low-resolution image fl to the predicted high-resolution
one fp. The Γ denotes the edge detection operator that can be implemented
with the Sobel edge detector [6, 21] and binary thresholding. As a result, real
edges of the high-resolution image Γ (f) can be approximated by the predicted
edges Γ (fp).

Step 2, due to a possible inaccuracy of the predicted edges, morphological
operations can be used to generate an adaptive sampling pattern around the
edges of f .

Sa =Mp(Γ (fp)) (3)

where Sa is the adaptive sampling pattern andMp is the binary morphological
operator on the edges of the predicted image fp. The morphological operator
involves dilation Mp

d and closing Mp
c (dilation followed by erosion), which can

be found at MATLAB image processing toolbox. Additionally, Mp
n suggests

no morphological operation is executed. After understanding the role of edges
in computer vision and image processing, we suppose that the image pixels
that located at edges or near the edges are more important than those located
at smooth regions. Consequently, involve the adaptive sampling pattern into
the sensing procedure is highly reasonable.

Step 3, generating the random sampling pattern Sr with a 2D uniform
distribution U(0, 1) × U(0, 1) and with a binary thresholding for controlling
the sampling ratio. The completely random sampling, which acquires pixels
at edges and smooth regions uniformly, captures the image profile information
and guarantees the RIP and incoherence condition.

Step 4, we mix the random and adaptive sampling patterns via a union
operation to get the new MAR sampling pattern (sensing matrix with 0/1
elements).

Sm = Sa

⋃

Sr

⋃

Sl (4)

where Sl is the low-resolution sampling pattern corresponding to fl, Sa is the
adaptive sampling pattern defined in step 2, and Sr is the random sampling
pattern defined in step 3. In other words, we reuse (do not resample) the pixels
of fl obtained at the Step 1 for saving the measurements.

To physically acquire the pixels corresponding to the MAR sensing matrix
Sm, we may use integrated circuits to control reset transistors (or switches) in
complementary metal-oxide-semiconductor (CMOS) camera. As a result, only
a portion of photodetectors and amplifiers (with respect to Sl and Sm\Sl) are
turned on. Compared to traditional image acquisitions, the MRA sensing saves
electrical power and increases lifetime of image sensors. Most importantly, the
MRA sensing can be generalized to other data acquisitions where the most
important information of object is adaptively extracted and learned via a low-
cost sampling.
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For convenience, the sensing ratio of the MAR sensing matrix η1 is defined
as the number of nonzero elements of Sm over the dimension of Sm (i.e. image
size of f). The adaptive sampling ratio η2 is defined as the number of nonzero
elements of Sm\Sr, which is the complement of Sr in Sm, over that of Sm.

η1 =

∑

i,j S(i, j)

Dim(Sm)
, η2 = 1−

∑

i,j Sr(i, j)
∑

i,j Sm(i, j)
(5)

The sensing ratio η1 could be considerably smaller and thus measurement cost
can be reduced. In addition, the adaptive sampling ratio η2 cannot be too
large to satisfy the RIP and incoherence condition.

At the end of this section, we would like to discuss the RIP of our sensing
matrix. A linear measurement (sensing) operator A : CN1×N2 → Cm has the
RIP of order s and level δ ∈ (0, 1), if

(1 − δ)‖X‖22 ≤ ‖A(X)‖22 ≤ (1 + δ)‖X‖22 for all s-sparse X ∈ C
N1×N2 (6)

where ‖X‖2 denotes the Frobenius norm of the image X. The smallest such δ
that (6) holds is denoted by δs and called the RIP constant.

In [19], Needell and Ward adopted the bivariate Haar transform to state
and prove the following theorem

Theorem 1 Consider n,m, s ∈ N, and let N = 2n. There is an absolute

constant C > 0 such that if A : CN×N → Cm is such that, composed with

the inverse bivariate Haar transform, AH−1 : CN×N → Cm has the restricted

isometry property of order Cs log3(N) and level δ < 1/3, then the following

holds for any X ∈ CN×N . If noisy measurements y = A(X) + ξ are observed

with noise level ‖ξ‖2 ≤ ε, then

X̂ = argmin
Z

‖Z‖TV such that ‖A(Z)− y‖2 ≤ ε

satisfies

‖X − X̂‖2 .
‖∇X − (∇X)s‖1√

s
+ ε (7)

From the theorem, when A is an identity operator and H is the orthogonal bi-
variate Haar transform, the measurements A will satisfy the RIP. Considering
the proposed sensing strategy, which can be regarded as an approximation of
the identity operator, could satisfy the RIP. We will further discuss the RIP
condition at the Section of Numerical Results.

3 Recovery Algorithm

After using the MAR sensing matrix to directly acquire a compressed image
representation, the recovery algorithm is essential to reconstruct a high-quality
image with a high resolution. The greedy pursuit algorithm [8, 12, 24] offers a
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ℓ0 minimization for sparse reconstruction. Linear programming [11] and other
convex optimization algorithms [3, 7, 15, 25] have been proposed to solve the
ℓ1-minimization also. The TV regularizer was introduced by Rudin, Osher and
Fatemi in [23] and became popular in recent years [1, 7, 20, 23].

Needell and Ward show that there are choices of underdetermined linear
measurements (constructed from RIP matrices) for which the TVminimization
program is guaranteed to recover images stably and robustly up to the best
s-term approximation of their gradient [19]. Fixing integers m, N and s such
that m ≥ C1s log(N

2/s), the reconstruction error satisfies

‖X − X̂‖2 ≤ C2 log(N
2/s)

(‖∇X − (∇X)s‖1√
s

+ ε

)

(8)

whereX and X̂ are original and reconstructed images, ε is the noise level of the
measurement,∇X is the gradient ofX , and C1 and C2 are universal constants.
The above inequality relies on the compressibility of the bivariate Haar wavelet
transform (More details can be found at [19]). The fundamental reason why
the MRA sensing could achieve better performance is that the sensing matrix
contains the edge information, which captures the s most important nonzero
∇X .

For reconstructing the high-resolution image f from the measurements
(compressed image representation) g, a Lagrangian regularization problem
should be solved, i.e.

min
f







∫

(g − Smf)
2
dxdy + α

∫

√

(

df

dx

)2

+

(

df

dy

)2

dxdy

+β

∫
√

(Tf)
2
dxdy

}

(9)

where Sm is the MAR sensing operator, α and β are Lagrangian multipliers,
and dx and dy are the differential operators. The second term is the TV
regularizer; and the third-term relates to ℓ1-minimization with a sparsifying
transform operator T . According to the variational principle, we have

δO(f)

δf
= 2S∗

m (g − Smf)− α
d

dx





df/dx
√

(df/dx)
2
+ (df/dy)

2





− α
d

dy





df/dy
√

(df/dx)
2
+ (df/dy)

2



+ βT ∗





Tf
√

(Tf)
2





(10)

whereO(f) is the objective functional given in (9), δ is the variational operator,
and S∗

m and T ∗ are adjoint operators of Sm and T , respectively. In this work,
we did not focus on the recovery algorithm and set β to zero for fast and simple
reconstruction. With the help of nonlinear conjugate gradient method [14,23]
and (10), the Lagrangian regularization problem (9) can be solved.
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4 Numerical Results

In this section, numerical performances of the proposed MAR sensing ma-
trix will be evaluated. Without loss of generality, we assume Dim(Sm) =
Dim(f) = 256 × 256. The sensing ratio η1 and adaptive sampling ratio η2
defined in (5) can be tuned by the threshold values of the binary thresholding
procedures of Steps 1 and 3 at Section 2. We will demonstrate that incorpora-
tion of edge information to the sensing procedure can pronouncedly improve
the recovery performance. In the beginning, the MAR sensing performance for
different edge extraction methods are investigated. Then, we compare recov-
ery results by the MAR sensing matrix to those by the completely random
sensing matrix. Finally, we will discuss the influence of η2 on the recovery per-
formance and compare our method with the standard CS and other random
partial sampling methods.

The low-resolution image fl is numerically generated by downsampling the
original high-resolution image f by a factor of 4, i.e. Dim(fl) = 64 × 64.
Using the bicubic interpolation method [16], we can get the predicted image
fp (Step 1 of Section 2). The edges of f and fp can be extracted by the
Sobel method (Step 1 of Section 2). For simple notations, Mn, Md and Mc

correspond to the edges of f with null morphological operation, dilation and
closing. Similarly, Mp

n, M
p
d and Mp

c correspond to the edges of fp (Step 2 of
Section 2). Moreover, we use abbreviations of Sr and Sm to denote sensing
methods using the completely random matrix and MAR matrix, respectively
(Step 4 of Section 2).

Fig. 2 shows the peak signal-to-noise ratio (PSNR) as a function of the
sensing ratio η1. We observe: (1) the convergence of all the methods are com-
parable; (2) the performance of Sm sensing is much better than that of Sr;
(3) the best PSNR is achieved by the Sm sensing involving the dilated edge
information. This also suggests the pixels around edges contain very important
information of image. Fig. 3 shows the sensing performance of the Phantom.
After comparing Figs. 3(g,k,o) to Figs. 3(h,l,p), Sm +Mn,d,c shows better re-
covery results than Sm +Mp

n,d,c. Instead of setting the parameter η2 directly,
in Fig. 2 and Fig. 3 we select the 1.75% × 256 × 256 edge pixels combined
with the 64 × 64 low resolution samples as the adaptive samples for each η1.
So the parameter η2 in Fig. 2 or Fig. 3 is not fixed for the different η1s.
However, the MAR sensing matrix incorporating predicted edges by Mp

n,d,c

operations still achieves high PSNR values (such as 29.93 dB with the sensing
ratio η1 = 29.94%) in contrast to the completely random sensing matrix (21.77
dB with the sensing ratio η1 = 30.24%). Using standard images, Fig. 4 and
Table 1 demonstrate significant advantages of the MAR sensing matrix not
only on PSNR but also on structural similarity (SSIM).

Too much edge information in the MAR sensing matrix will destroy the
RIP and incoherence condition of the framework. This situation occurs when
an extremely high adaptive sampling ratio η2 is set. Generally speaking, there
is a tradeoff between the η2 and the recovery performance. Fig. 5 and Tab.
2 show the tradeoff between η2 and recovery performance. The bigger η2 the
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Fig. 2 PSNR performance as a function of the sensing ratio η1 for the completely random
sensing Sr and MAR sensing Sm.

Table 1 Reconstruction performance using the MAR sensing matrix Sm and completely
random sensing matirx Sr .

Image PSNR SSIM η1 η2

Phantom

Sr 21.7653 0.9486 30.24%

Sm + M
p

d
72.4857 1.0000 29.81% 43.76%

Sm + Mp
c 25.5346 0.9712 30.24% 26.64%

Fruits

Sr 25.6011 0.8336 30.46%

Sm + M
p

d
33.6908 0.8767 30.30% 68.11%

Sm + Mp
c 27.0509 0.8409 30.28% 23.00%

Lena

Sr 25.5683 0.8634 30.18%

Sm + M
p

d
31.3728 0.8845 29.82% 68.55%

Sm + Mp
c 27.5257 0.8714 29.82% 37.38%

Boat

Sr 24.4288 0.7433 29.85%

Sm + M
p

d
28.7316 0.7715 29.81% 84.69%

Sm + Mp
c 25.0184 0.7513 29.82% 36.02%

better performance. But with very large η2 both objective PSNR/SSIM mea-
surements and visually quality will decline. Especially the details in smooth
regions of the images are vanished to some extent although the objective mea-
surements are still well for some images when η2 is very large. We evaluate the
optimum value of η2 for η1 as illustrated in Fig. 6. Using morphology opera-
tions, better reconstruction results are achieved by the MAR sensing even if
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 3 Reconstructed Phantom images with sensing ratios of 30.24%, 29.41%, 29.16%
29.85%, 29.94%, 28.87% and 28.01% respectively for Sr , Sm + Mn, Sm + M

p
n, Sm + Md,

Sm + M
p

d
, Sm + Mc and Sm + M

p
c . (a) The original Phantom image; (b) The predicted

image fp; (c) Low-resolution sampling pattern Sl; (d) Sr sensing: 21.7653 dB; (e) Mn for
edges of (a); (f) Mp

n for edges of (b); (g) Sm+Mn sensing: 30.1195 dB; (h) Sm+M
p
n sensing:

24.5746 dB; (i) Md for edges of (a); (j) Mn
d

for edges of (b); (k) Sm +Md sensing: 65.3853
dB; (l) Sm +M

p

d
sensing: 29.9294 dB; (m) Mc for edges of (a); (n) M

p
c for edges of (b); (o)

Sm +Mc sensing: 31.2032 dB; (p) Sm +M
p
c sensing: 24.1066 dB
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 4 Reconstructed Phantom, Fruits, Lena and Boat images using Sr , Sm+M
p

d
and Sm+

M
p
c strategies. (a)-(d): The original images; (e)-(h), (i)-(l) and (m)-(p) are corresponding

reconstructed images for Sr , Sm +M
p

d
and Sm +M

p
c , respectively. The corresponding key

parameters are listed in Table 1.

the number of adaptive sampling is larger than that of random sampling (the
optimum ηopt2 ≈ 80% for Sm+Mp

d ). It is necessary to state that the curve lines
in Fig. 6 (b) and (d) are missing when η2 is large. In one hand the Sm +Mp

c

curve line will descend when the parameter η2 increase and exceed a tradeoff
threshold. With the increasing of η2 the Sm +Mp

c curve line will lies under
the horizontal line of the random sampling pattern Sr. In the other hand, we
just want to find the optimum η2. The optimum η2 reasonably locates at the



Title Suppressed Due to Excessive Length 11

Table 2 The dependence of reconstruction performance on the adaptive sampling ratio
η2: optimum η2 and very large η2. The RIP cannot be maintained when η2 goes beyond a
threshold.

Image PSNR SSIM η1 η2

Lena

Sr 28.8945 0.9143 44.48%

Sm + M
p

d
36.9584 0.9448 44.48% 74.10%

Sm + M
p

d
22.9407 0.8777 44.47% 99.64%

Boat

Sr 26.3038 0.8337 44.69%

Sm + M
p

d
32.9985 0.8701 44.69% 90.61%

Sm + M
p

d
30.4449 0.8524 44.69% 94.22%

top point of the Sm +Mp
c curve lines and it should lies above the horizontal

line of Sr. So the Sm +Mp
c curve lines under the horizontal line of Sr can be

omitted.

(a) (b) (c)

(d) (e) (f)

Fig. 5 Reconstructed Lena and Boat images using Sr and Sm +M
p
n strategies. (a) and (d)

are reconstructed images for Sr. (b) and (e) are reconstructed images for Sm+M
p

d
with the

optimum η2. (c) and (f) are reconstructed images for Sm +M
p

d
with the very large η2. The

corresponding key parameters are listed in Table 2.

As a sampling method in spatial domain, we also compare it with the
projection characterized standard CS with the same sampling rate. In Fig.
7 we show the original ball image with size 64 × 64 in Fig. 7 (a), and the
reconstructed image by the standard CS in Fig. 7 (b); the completely ran-
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Fig. 6 Evaluating the threshold of η2 for Sm +M
p

d
and Sm +M

p
c . The sensing ratio η1 for

Sr is set as (a): 30.05%, (b): 44.48%, (c): 29.81% and (d): 44.69%. And the sensing ratio η1
for Sm +M

p

d,c
is almost the same as that of Sr with the error no more than ±0.01%.

dom partial sampling method in spatial domain in Fig. 7 (c) and the mixed
adaptive-random sampling (Sm + Mp

d ) method in Fig. 7 (d). For the three
methods above the sample rate is 30% and the PSNR value for the recovered
images are 28.9019, 32.2531 and 34.1675 respectively. In the traditional ran-
dom projection method in CS, the OMP algorithm and the “sym 8” wavelet
transform are employed, and the the ball image is denoted as a vector with
size 4096× 1 to directly sense and recovery. Here there are two main reasons
for the poor performance of standard CS. One is the OMP recovery algorithm,
which focus on the operation speed rather than the recovery efficiency, and
the other is the limited sparse representation ability of wavelet transformation.
Other good recovery algorithm and better sparse representation will achieve
better performance, which may surpass ours. However this paper do not aim
at developing a reconstruction algorithm but proposing a new concept for
measurement learning.

We mainly focus on the importance of edges as the prior information ex-
ploited in the sampling processing. Our sampling strategy is the random partial
sampling in spatial domain of signals. The paper did not aim at developing a
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(a) (b) (c) (d)

Fig. 7 Experiment results: the visual performance of standard CS and the random partial
sampling framework.(a) the original ball image, and the recovered ball by (b): standard CS;
(c) completely random partial sampling and (d) mixed adaptive-random sampling: Sm+M

p

d

reconstruction algorithm but proposing a new concept for measurement learn-
ing. In our method the sampling strategy includes three successive sampling
processes. The first one is to get the low-resolution image and then the pre-
dicted edges are employed to guide for the second adaptive sampling process.
By combining the third random sampling process the total samplings can
achieve much better performance than completely random sampling with the
same sampling rate and recovery algorithm as demonstrated above. Some im-
proved recovery algorithm can also achieve much better performance in the
partial random sampling methods [26, 27].

In the end of this section we compare our method with the partial random
sampling method, which we note it as the random sampling and GSR recov-
ery (R-GSR), in the literature [26, 27]. R-GSR employs the nonlocal adaptive
3-D sparse representation prior to developed the Split-Bregman based itera-
tive recovery algorithm. Our method and R-GSR use the different strategies
to achieve better performance. Our method focus on the adaptive sampling
strategy with TV recovery algorithm while the later pays close attention to
the improved recovery algorithm with completely random sampling strategy.
MAR-GSR denotes the method with MAR sampling strategy and the GSR re-
covery algorithm. As MAR-GSR, TRPS-GSR denotes the method with TRPS
sampling strategy and the GSR recovery algorithm.

In practice we can directly use the random partial sampling S̄r to get the
low-resolution image and then the predicted edges. The edges are employed
to guide for the adaptive sampling S̄a. We name this sampling strategy, S̄m =
S̄r

⋃

S̄a, as the two random partial samplings (TRPS). The η̄2 is defined as

η̄2 = 1−
∑

i,j
S̄r(i,j)

∑
i,j

S̄m(i,j)
. In this way we can get rich edges by adjusting the ratio

between the fist random sampling S̄r and the second adaptive sampling S̄a.

For fair comparison, we use four standard test gray images with the size
of 256× 256 including House, Barbara, Lean and Boat. The iterative number
in the literature [26, 27] are set to 60, 50 and 40 for the sample ratio 0.3,
0.5 and 0.8 respectively. We set η2 = 0.6 and η̄2 = 0.4 for MAR and TRPS
respectively. Tab. 3 shows the PSNR comparisons among different algorithms.
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Table 3 The PSNR (dB) comparisons among different algorithms.

Image Data Ratio MAR R-GSR [26, 27] TRPS MAR-GSR TRPS-GSR

House

30% 32.7723 36.7562 33.6687 37.1779 37.0893

50% 35.6070 40.3797 38.7431 40.6712 41.7113

80% 38.7992 46.3753 47.7785 45.6682 49.8807

Barbara

30% 24.5645 34.9229 24.7261 33.5012 34.3876

50% 27.4300 39.2226 29.3758 39.6593 39.8125

80% 29.8954 45.7269 42.1341 42.3528 47.7081

Lena

30% 28.1117 30.3159 28.7301 31.2212 31.7998

50% 32.3837 33.9816 35.1140 36.1792 37.7648

80% 35.5468 40.2195 43.2416 40.2195 46.1186

Boat

30% 25.4256 25.7810 26.3588 26.7768 27.1711

50% 28.5856 28.7616 30.8805 30.3538 32.0989

80% 31.7591 34.4550 39.3448 34.1296 40.0811

We can see that our sampling strategy can achieve better or comparable
recovery performance when we use the same recovery algorithm GSR. Fig. 8
shows the random partial sampling masks and the recovered images for R-
GSR, MAR-GSR and TRPS-GSR respectively with the same ratio (50%) and
the same recovery algorithm (GSR).

(a) (b) (c)

(d) (e) (f)

Fig. 8 Experiment results: the sampling masks with sample ratio 50% and the visual per-
formance of the random partial sampling frameworks.(a),(b) and (c) are the partial sampling
masks with the same ratio 50% for random sampling, MAR and TRPS respectively. (d),
(e) and (f) are the corresponding recovered images for R-GSR, MAR-GSR and TRPS-GSR
with the GSR recovery algorithm.
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5 Conclusion

In this paper, a novel MAR sensing protocol is proposed to acquire a com-
pressed image representation in space domain. Incorporating adaptive edge
information that can be trivially extracted from a low-resolution sampling,
the MAR measurements show much better reconstruction results in compar-
ison with the completely random measurements. The RIP and incoherence
condition of the MAR sensing matrix can be satisfied by balancing the num-
ber of adaptive sampling with that of completely random sampling. The mixed
sensing concept opens up a bright and unexplored way for high-resolution and
lost-cost data acquisition.
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