207 research outputs found

    Energy-saving Resource Allocation by Exploiting the Context Information

    Full text link
    Improving energy efficiency of wireless systems by exploiting the context information has received attention recently as the smart phone market keeps expanding. In this paper, we devise energy-saving resource allocation policy for multiple base stations serving non-real-time traffic by exploiting three levels of context information, where the background traffic is assumed to occupy partial resources. Based on the solution from a total energy minimization problem with perfect future information,a context-aware BS sleeping, scheduling and power allocation policy is proposed by estimating the required future information with three levels of context information. Simulation results show that our policy provides significant gains over those without exploiting any context information. Moreover, it is seen that different levels of context information play different roles in saving energy and reducing outage in transmission.Comment: To be presented at IEEE PIMRC 2015, Hong Kong. This work was supported by National Natural Science Foundation of China under Grant 61120106002 and National Basic Research Program of China under Grant 2012CB31600

    Bandwidth efficient multi-station wireless streaming based on complete complementary sequences

    Get PDF
    Data streaming from multiple base stations to a client is recognized as a robust technique for multimedia streaming. However the resulting transmission in parallel over wireless channels poses serious challenges, especially multiple access interference, multipath fading, noise effects and synchronization. Spread spectrum techniques seem the obvious choice to mitigate these effects, but at the cost of increased bandwidth requirements. This paper proposes a solution that exploits complete complementary spectrum spreading and data compression techniques jointly to resolve the communication challenges whilst ensuring efficient use of spectrum and acceptable bit error rate. Our proposed spreading scheme reduces the required transmission bandwidth by exploiting correlation among information present at multiple base stations. Results obtained show 1.75 Mchip/sec (or 25%) reduction in transmission rate, with only up to 6 dB loss in frequency-selective channel compared to a straightforward solution based solely on complete complementary spectrum spreading

    Near-capacity dirty-paper code design : a source-channel coding approach

    Get PDF
    This paper examines near-capacity dirty-paper code designs based on source-channel coding. We first point out that the performance loss in signal-to-noise ratio (SNR) in our code designs can be broken into the sum of the packing loss from channel coding and a modulo loss, which is a function of the granular loss from source coding and the target dirty-paper coding rate (or SNR). We then examine practical designs by combining trellis-coded quantization (TCQ) with both systematic and nonsystematic irregular repeat-accumulate (IRA) codes. Like previous approaches, we exploit the extrinsic information transfer (EXIT) chart technique for capacity-approaching IRA code design; but unlike previous approaches, we emphasize the role of strong source coding to achieve as much granular gain as possible using TCQ. Instead of systematic doping, we employ two relatively shifted TCQ codebooks, where the shift is optimized (via tuning the EXIT charts) to facilitate the IRA code design. Our designs synergistically combine TCQ with IRA codes so that they work together as well as they do individually. By bringing together TCQ (the best quantizer from the source coding community) and EXIT chart-based IRA code designs (the best from the channel coding community), we are able to approach the theoretical limit of dirty-paper coding. For example, at 0.25 bit per symbol (b/s), our best code design (with 2048-state TCQ) performs only 0.630 dB away from the Shannon capacity

    Efficient video identification based on locality sensitive hashing and triangle inequality

    Get PDF
    Master'sMASTER OF SCIENC

    Oiling-out Crystallization of Beta-Alanine onSolid Surfaces Controlled by Solvent Exchange

    Full text link
    Droplet formation in oiling-out crystallization has important implication for separation and purification of pharmaceutical active ingredients by using an antisolvent. In this work, we report the crystallization processes of oiling-out droplets on surfaces during solvent exchange. Our model ternary solution is beta-alanine dissolved in isopropanol and water mixture. As the antisolvent isopropanol displaced the alanine solution pre-filled in a microchamber, liquid-liquid phase separation occurred at the mixing front. The alanine-rich subphase formed surface microdroplets that subsequently crystallized with progression of solvent exchange. We find that the flow rates have significant influence on the droplet size, crystallization process, and growth rate, and final morphology of the crystals. At fast flow rates the droplets solidified rapidly and formed spherical-cap structures resembling the shape of droplets, in contrast to crystal microdomains or thin films formed at slow flow rates. On a highly hydrophilic surface, the crystals formed thin film without droplets formed on the surface. We further demonstrated that by the solvent exchange crystals can be formed by using a stock solution with a very low concentration of the precursor, and the as-prepared crystals can be used as seeds to trigger crystallization in bulk solution. Our results suggest that the solvent exchange has the potential to be an effective approach for controlling oiling-out crystallization, which can be applied in wide areas, such as separation and purification of many food, medical, and therapeutic ingredients.Comment: Advanced Materials Interfaces (2020

    Proteins Identified from Saliva and Salivary Glands of the Chinese Gall Aphid Schlechtendalia chinensis

    Full text link
    Aphid saliva plays an essential role in the interaction between aphids and their host plants. Several aphid salivary proteins have been identified but none from galling aphids. Here the salivary proteins from the Chinese gall aphid are analyzed, Schlechtendalia chinensis, via an LC-MS/MS analysis. A total of 31 proteins are identified directly from saliva collected via an artificial diet, and 141 proteins are identified from extracts derived from dissected salivary glands. Among these identified proteins, 17 are found in both collected saliva and dissected salivary glands. In comparison with salivary proteins from ten other free-living Hemipterans, the most striking feature of the salivary protein from S. chinensis is the existence of high proportion of proteins with binding activity, including DNA-, protein-, ATP-, and iron-binding proteins. These proteins maybe involved in gall formation. These results provide a framework for future research to elucidate the molecular basis for gall induction by galling aphids
    corecore