44,204 research outputs found
SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization
We study unsupervised multi-document summarization evaluation metrics, which
require neither human-written reference summaries nor human annotations (e.g.
preferences, ratings, etc.). We propose SUPERT, which rates the quality of a
summary by measuring its semantic similarity with a pseudo reference summary,
i.e. selected salient sentences from the source documents, using contextualized
embeddings and soft token alignment techniques. Compared to the
state-of-the-art unsupervised evaluation metrics, SUPERT correlates better with
human ratings by 18-39%. Furthermore, we use SUPERT as rewards to guide a
neural-based reinforcement learning summarizer, yielding favorable performance
compared to the state-of-the-art unsupervised summarizers. All source code is
available at https://github.com/yg211/acl20-ref-free-eval.Comment: ACL 202
Occlusion Aware Unsupervised Learning of Optical Flow
It has been recently shown that a convolutional neural network can learn
optical flow estimation with unsupervised learning. However, the performance of
the unsupervised methods still has a relatively large gap compared to its
supervised counterpart. Occlusion and large motion are some of the major
factors that limit the current unsupervised learning of optical flow methods.
In this work we introduce a new method which models occlusion explicitly and a
new warping way that facilitates the learning of large motion. Our method shows
promising results on Flying Chairs, MPI-Sintel and KITTI benchmark datasets.
Especially on KITTI dataset where abundant unlabeled samples exist, our
unsupervised method outperforms its counterpart trained with supervised
learning.Comment: CVPR 2018 Camera-read
On Some Aspects of Model Selection Variability
In this thesis, we investigate the data analytic approach to integrate the model selection uncertainty into the statistical inferences of high dimensional estimators. Two closed-form formulae of covariance matrices are derived for high dimensional bagging estimators, one for the nonparametric bootstrapping and the other for the parametric bootstrapping. Two simulation studies are completed in detail for demonstrating the validity of the new formulae. Several model selection methods --- the hypothesis testing, the Mallows' , AIC, BIC and LASSO --- are compared in terms of the effects on the accuracy of bagging estimators in the context of multivariate linear regression. The confidence region and its coverage probability are also estimated for the bagging estimators with those model selection methods
- …