259 research outputs found

    Going Beyond Linear Mode Connectivity: The Layerwise Linear Feature Connectivity

    Full text link
    Recent work has revealed many intriguing empirical phenomena in neural network training, despite the poorly understood and highly complex loss landscapes and training dynamics. One of these phenomena, Linear Mode Connectivity (LMC), has gained considerable attention due to the intriguing observation that different solutions can be connected by a linear path in the parameter space while maintaining near-constant training and test losses. In this work, we introduce a stronger notion of linear connectivity, Layerwise Linear Feature Connectivity (LLFC), which says that the feature maps of every layer in different trained networks are also linearly connected. We provide comprehensive empirical evidence for LLFC across a wide range of settings, demonstrating that whenever two trained networks satisfy LMC (via either spawning or permutation methods), they also satisfy LLFC in nearly all the layers. Furthermore, we delve deeper into the underlying factors contributing to LLFC, which reveal new insights into the spawning and permutation approaches. The study of LLFC transcends and advances our understanding of LMC by adopting a feature-learning perspective.Comment: 25 pages, 23 figure

    Data-Centric Diet: Effective Multi-center Dataset Pruning for Medical Image Segmentation

    Full text link
    This paper seeks to address the dense labeling problems where a significant fraction of the dataset can be pruned without sacrificing much accuracy. We observe that, on standard medical image segmentation benchmarks, the loss gradient norm-based metrics of individual training examples applied in image classification fail to identify the important samples. To address this issue, we propose a data pruning method by taking into consideration the training dynamics on target regions using Dynamic Average Dice (DAD) score. To the best of our knowledge, we are among the first to address the data importance in dense labeling tasks in the field of medical image analysis, making the following contributions: (1) investigating the underlying causes with rigorous empirical analysis, and (2) determining effective data pruning approach in dense labeling problems. Our solution can be used as a strong yet simple baseline to select important examples for medical image segmentation with combined data sources.Comment: Accepted by ICML workshops 202

    Learning to In-paint: Domain Adaptive Shape Completion for 3D Organ Segmentation

    Full text link
    We aim at incorporating explicit shape information into current 3D organ segmentation models. Different from previous works, we formulate shape learning as an in-painting task, which is named Masked Label Mask Modeling (MLM). Through MLM, learnable mask tokens are fed into transformer blocks to complete the label mask of organ. To transfer MLM shape knowledge to target, we further propose a novel shape-aware self-distillation with both in-painting reconstruction loss and pseudo loss. Extensive experiments on five public organ segmentation datasets show consistent improvements over prior arts with at least 1.2 points gain in the Dice score, demonstrating the effectiveness of our method in challenging unsupervised domain adaptation scenarios including: (1) In-domain organ segmentation; (2) Unseen domain segmentation and (3) Unseen organ segmentation. We hope this work will advance shape analysis and geometric learning in medical imaging

    Sieve-Like CNT Film Coupled with TiO 2 Nanowire for High-Performance Continuous-Flow Photodegradation of Rhodamine B under Visible Light Irradiation

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-05-14, pub-electronic 2021-05-19Publication status: PublishedFunder: National Key Research and Development Program of China; Grant(s): 2016YFA0203301Funder: National Natural Science Foundation of China; Grant(s): 51862035, 52062048Funder: the Science and Technology Project of Jiangxi Province; Grant(s): 20192BCD40017, 20192ACB80002, S2018LQCQ0016, 2017-SJSYS-008Continuous-flow photoreactors hold great promise for the highly efficient photodegradation of pollutants due to their continuity and sustainability. However, how to enable a continuous-flow photoreactor with the combined features of high photodegradation efficiency and durability as well as broad-wavelength light absorption and large-scale processing remains a significant challenge. Herein, we demonstrate a facile and effective strategy to construct a sieve-like carbon nanotube (CNT)/TiO2 nanowire film (SCTF) with superior flexibility (180° bending), high tensile strength (75–82 MPa), good surface wettability, essential light penetration and convenient visible light absorption. Significantly, the unique architecture, featuring abundant, well-ordered and uniform mesopores with ca. 70 ”m in diameter, as well as a homogenous distribution of TiO2 nanowires with an average diameter of ca. 500 nm, could act as a “waterway” for efficient solution infiltration through the SCTF, thereby, enabling the photocatalytic degradation of polluted water in a continuous-flow mode. The optimized SCTF-2.5 displayed favorable photocatalytic behavior with 96% degradation of rhodamine B (RhB) within 80 min and a rate constant of 0.0394 min−1. The continuous-flow photodegradation device made using SCTF-2.5 featured exceptional photocatalytic behavior for the continuous degradation of RhB under simulated solar irradiation with a high degradation ratio (99.6%) and long-term stability (99.2% retention after working continuously for 72 h). This work sheds light on new strategies for designing and fabricating high-performance continuous-flow photoreactors toward future uses

    Total Parenteral Nutrition-Associated Changes in Mouse Intestinal Intraepithelial Lymphocytes

    Full text link
    Intraepithelial lymphocytes (IEL) play a major role in mucosal defense mechanisms against intraluminal foreign antigens. To address the role luminal nutrients have on the phenotype and function of the IEL, we administered total parenteral nutrition (TPN) to mice, with the absence of enteral intake. We hypothesized that administration of TPN would result in changes in the phenotype and function of the IEL. For this, we utilized a mouse model of TPN. A significant decline in the CD4 + IEL population occurred with TPN. Additionally, the CD8 + ,CD44 + IEL subset showed a 65% decline (P < 0.05) , and the CD4 + ,CD44 + subset declined by 55% with TPN (P < 0.05) . The CD8αÎČ + population (a marker of thymic-dependence) also declined by 92% (P < 0.01) with TPN. IEL in the TPN group showed a significantly lower degree of in vitro proliferation. In conclusion, the IEL showed significant phenotypic changes with TPN including the loss of the thymic-derived population. Functionally, the IEL showed a significant decline in proliferation. Such changes demonstrate the important role luminal nutrients have on IEL phenotype and function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44430/1/10620_2004_Article_373218.pd
    • 

    corecore