112 research outputs found

    Modulation and Coding Design for Simultaneous Wireless Information and Power Transfer

    Get PDF
    In order to satisfy the power demands of IoT devices and thus extend their lifespan, radio frequency (RF) signal aided wireless power transfer (WPT) is exploited for remote charging. Carefully coordinating both the WPT and wireless information transfer (WIT) yields an emerging research trend in simultaneous wireless information and power transfer (SWIPT). However, SWIPT systems designed by assuming Gaussian distributed input signals may suffer from a substantial performance degradation in practice, when the finite alphabetical input is considered. In this article, we will provide a design guide of coding controlled SWIPT and study the modulation design in both single-user and multi-user SWIPT systems. We hope this guide may push SWIPT a step closer from theory to practice

    Evaluating the performance of Chinese commercial banks:A comparative analysis of different types of banks

    Get PDF
    This paper examines the cost and profit efficiency of four types of Chinese commercial banks over the period from 2002 to 2013. We find that the cost and profit efficiencies improved across all types of Chinese domestic banks in general and the banks are more profit-efficient than cost efficient. Foreign banks are the most cost efficient but the least profit efficient. The profit efficiency gap between foreign banks and domestic banks has widened after the World Trade Organization transition period (2007–2013). Ownership structure, market competition, bank size, and listing status are the main determinants of the efficiency of Chinese banks. We also find a causal relationship between efficiency and SROE by using the panel auto regression method. The evidence from the shadow return on equity (SROE) suggests that policy makers should be cautious of the adjustment costs imposed by the recapitalization process, which offsets the efficiency gains

    A search for passive protoplanetary disks in the Taurus-Auriga star-forming region

    Full text link
    We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disk but have a weak Halpha line, a common accretion tracer for young stars, to determine whether they host a passive circumstellar disk. We used medium-resolution optical spectroscopy to assess the objects' accretion status and to measure the Halpha line. We found no convincing example of passive disks; only transition disk and debris disk systems in our sample are non-accreting. Among accretors, we find no example of flickering accretion, leading to an upper limit of 2.2% on the duty cycle of accretion gaps assuming that all accreting TTS experience such events. Combining literature results with our observations, we find that the reliability of traditional Halpha-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We find a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10%) of the Halpha line that does not seem to be related to variations in free-fall velocity. Finally, our data reveal a positive correlation between the Halpha equivalent width and its W10%, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the Halpha W10% through a common physical mechanism.Comment: accepted for publication in MNRAS; 26 pages, 9 figures, 3 table

    A Fair Resource Allocation Algorithm for Data and Energy Integrated Communication Networks

    Get PDF
    With the rapid advancement of wireless network technologies and the rapid increase in the number of mobile devices, mobile users (MUs) have an increasing high demand to access the Internet with guaranteed quality-of-service (QoS). Data and energy integrated communication networks (DEINs) are emerging as a new type of wireless networks that have the potential to simultaneously transfer wireless energy and information via the same base station (BS). This means that a physical BS is virtualized into two parts: one is transferring energy and the other is transferring information. The former is called virtual energy base station (eBS) and the latter is named as data base station (dBS). One important issue in such setting is dynamic resource allocation. Here the resource concerned includes both power and time. In this paper, we propose a fair data-and-energy resource allocation algorithm for DEINs by jointly designing the downlink energy beamforming and a power-and-time allocation scheme, with the consideration of finite capacity batteries at MUs and power sensitivity of radio frequency (RF) to direct current (DC) conversion circuits. Simulation results demonstrate that our proposed algorithm outperforms the existing algorithms in terms of fairness, beamforming design, sensitivity, and average throughput.</jats:p

    Shifted Diffusion for Text-to-image Generation

    Full text link
    We present Corgi, a novel method for text-to-image generation. Corgi is based on our proposed shifted diffusion model, which achieves better image embedding generation from input text. Unlike the baseline diffusion model used in DALL-E 2, our method seamlessly encodes prior knowledge of the pre-trained CLIP model in its diffusion process by designing a new initialization distribution and a new transition step of the diffusion. Compared to the strong DALL-E 2 baseline, our method performs better in generating image embedding from the text in terms of both efficiency and effectiveness, resulting in better text-to-image generation. Extensive large-scale experiments are conducted and evaluated in terms of both quantitative measures and human evaluation, indicating a stronger generation ability of our method compared to existing ones. Furthermore, our model enables semi-supervised and language-free training for text-to-image generation, where only part or none of the images in the training dataset have an associated caption. Trained with only 1.7% of the images being captioned, our semi-supervised model obtains FID results comparable to DALL-E 2 on zero-shot text-to-image generation evaluated on MS-COCO. Corgi also achieves new state-of-the-art results across different datasets on downstream language-free text-to-image generation tasks, outperforming the previous method, Lafite, by a large margin

    Joint Resources and Workflow Scheduling in UAV-Enabled Wirelessly-Powered MEC for IoT Systems

    Get PDF
    This paper considers a UAV-enabled mobile edge computing (MEC) system, where a UAV first powers the Internet of things device (IoTD) by utilizing Wireless Power Transfer (WPT) technology. Then each IoTD sends the collected data to the UAV for processing by using the energy harvested from the UAV. In order to improve the energy efficiency of the UAV, we propose a new time division multiple access (TDMA) based workflow model, which allows parallel transmissions and executions in the UAV-assisted system. We aim to minimize the total energy consumption of the UAV by jointly optimizing the IoTDs association, computing resources allocation, UAV hovering time, wireless powering duration and the services sequence of the IoTDs. The formulated problem is a mixed-integer non-convex problem, which is very difficult to solve in general. We transform and relax it into a convex problem and apply flow-shop scheduling techniques to address it. Furthermore, an alternative algorithm is developed to set the initial point closer to the optimal solution. Simulation results show that the total energy consumption of the UAV can be effectively reduced by the proposed scheme compared with the conventional systems
    • …
    corecore