145 research outputs found
Role of Exosomes in Crosstalk Between Cancer-Associated Fibroblasts and Cancer Cells
Cancer-associated fibroblasts (CAFs) are important cells of the tumor microenvironment that can communicate with tumor cells through various mechanisms. Recently, increasing studies have found that exosomes transmit biological information by carrying microRNAs, lncRNAs, proteins, metabolites, and other substances, and thus exert biological and therapeutic effects. CAF-secreted exosomes can also affect the tumor phenotype, while the exosomes released by tumor cells can activate CAFs. Here, we review the role of exosomes in the crosstalk between CAFs and tumor cells and elaborate its mechanism
Metabolomics of Clinical Poisoning by Aconitum Alkaloids Using Derivatization LC-MS
The root of Aconitum kusnezoffii (Caowu in Chinese, CW) is not only commonly used as a traditional Chinese medicine (TCM), but also served as a tonic in China. Due to its high toxicity, clinical poisoning cases induced by CW have frequently been reported. However, the mechanism is still unclear. In this study, Aconitum alkaloids and altered endogenous metabolites in CW poisoning patients were investigated to elucidate the possible intoxication mechanism. Eighteen alkaloids, including 6 toxic diester diterpenoid alkaloids (DDAs), were determined from the sera of patients. At the same time, 5-(diisopropylamino)amylamine (DIAAA) derivatization-ultrahigh performance liquid chromatography- quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF/MS) approach was applied in the metabolomics analysis to find much more carboxyl-containing metabolites (CCMs), which are the essential components for life and critical to elucidate the mechanism of toxicity. As a result, 32 altered metabolites after poisoning were identified. Among them, hydroxyeicosatetraenoic acids (HETEs) and some dicarboxylic acids were first found to be related to Aconitum alkaloids toxicity. Finally, biological pathway analysis indicated that the significantly changed metabolites were primarily involved in amino acid metabolism, TCA cycle, fatty acid metabolism, pyruvate metabolism, arachidonic acid metabolism, sphingolipid metabolism and so on. These results can not only provide more information on the mechanism of CW intoxication but also help the clinical diagnosis of CW poisoning
Shorter TCR β-Chains Are Highly Enriched During Thymic Selection and Antigen-Driven Selection
The adaptive immune system uses several strategies to generate a repertoire of T cell receptors (TCR) with sufficient diversity to recognize the universe of potential pathogens. However, it remains unclear how differences in the T cell receptor (TCR) contribute to heterogeneity in T cell state. In this study, we used polychromatic flow cytometry to isolate highly pure CD4+/CD8+ naive and memory T cells, and applied deep sequencing to characterize corresponding TCR β-chain (TCRβ) complementary-determining region 3 (CDR3) repertoires. We find that shorter TCRβ CDR3s with fewer insertions were highly enriched during thymic selection. Antigen-experienced T cells (memory T cells) harbor shorter CDR3s vs. naive T cells. Moreover, the public TCRβ CDR3 clonotypes within cell subsets or interindividual tend to have shorter CDR3 length and a significantly larger size compared with “private” clonotypes. Taken together, shorter CDR3s highly enriched during thymic selection and antigen-driven selection, and further enriched in public T-cell responses. These results indicated that it may be evolutionary pressures drive short CDR3s to recognize most of antigen in nature
Ansor : Generating High-Performance Tensor Programs for Deep Learning
High-performance tensor programs are crucial to guarantee efficient execution
of deep neural networks. However, obtaining performant tensor programs for
different operators on various hardware platforms is notoriously challenging.
Currently, deep learning systems rely on vendor-provided kernel libraries or
various search strategies to get performant tensor programs. These approaches
either require significant engineering effort to develop platform-specific
optimization code or fall short of finding high-performance programs due to
restricted search space and ineffective exploration strategy.
We present Ansor, a tensor program generation framework for deep learning
applications. Compared with existing search strategies, Ansor explores many
more optimization combinations by sampling programs from a hierarchical
representation of the search space. Ansor then fine-tunes the sampled programs
with evolutionary search and a learned cost model to identify the best
programs. Ansor can find high-performance programs that are outside the search
space of existing state-of-the-art approaches. In addition, Ansor utilizes a
task scheduler to simultaneously optimize multiple subgraphs in deep neural
networks. We show that Ansor improves the execution performance of deep neural
networks relative to the state-of-the-art on the Intel CPU, ARM CPU, and NVIDIA
GPU by up to , , and , respectively.Comment: Published in OSDI 202
MiR-574-5p Activates Human TLR8 to Promote Autoimmune Signaling and Lupus
Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis
Terlipressin May Decrease In-Hospital Mortality of Cirrhotic Patients with Acute Gastrointestinal Bleeding and Renal Dysfunction: A Retrospective Multicenter Observational Study
Acute gastrointestinal bleeding (GIB) rapidly reduces effective blood volume, thereby precipitating acute kidney injury (AKI). Terlipressin, which can induce splanchnic vasoconstriction and increase renal perfusion, has been recommended for acute GIB and hepatorenal syndrome in liver cirrhosis. Thus, we hypothesized that terlipressin might be beneficial for cirrhotic patients with acute GIB and renal impairment. In this Chinese multi-center study, 1644 cirrhotic patients with acute GIB were retrospectively enrolled. AKI was defined according to the International Club of Ascites (ICA) criteria. Renal dysfunction was defined as serum creatinine (sCr) > 133 μmol/L at admission and/or any time point during hospitalization. Incidence of renal impairment and in-hospital mortality were the primary end-points. The incidence of any stage ICA-AKI, ICA-AKI stages 1B, 2, and 3, and renal dysfunction in cirrhotic patients with acute GIB was 7.1%, 1.8%, and 5.0%, respectively. The in-hospital mortality was significantly increased by renal dysfunction (14.5% vs. 2.2%, P < 0.001) and ICA-AKI stages 1B, 2, and 3 (11.1% vs. 2.8%, P = 0.011), but not any stage ICA-AKI (5.7% vs. 2.7%, P = 0.083). The in-hospital mortality was significantly decreased by terlipressin in patients with renal dysfunction (3.6% vs. 20.0%, P = 0.044), but not in those with any stage ICA-AKI (4.5% vs. 6.0%, P = 0.799) or ICA-AKI stages 1B, 2, and 3 (0.0% vs. 14.3%, P = 0.326). Renal dysfunction increased the in-hospital mortality of cirrhotic patients with acute GIB. Terlipressin might decrease the in-hospital mortality of cirrhotic patients with acute GIB and renal dysfunction. NCT03846180 ( https://clinicaltrials.gov )
- …