179 research outputs found

    Experimental Study of Thin Wall Milling Chatter Stability Nonlinear Criterion

    Get PDF
    AbstractThe nonlinear dynamic behavior of milling process has been accompanied by the entire cutting process. In order to accurately determine and predict chatter stability of machining process, this article studied at both ends of the fixed thin part nonlinear criterion of milling chatter stability with experimental method. The experiment takes the vibration signal of thin part as the study object. And it analyses the vibration signal of different processing parameters based on the phase plane method, Poincare method and spectral analysis. Then, the relationship between the maximum Lyapunov exponent and the spindle speed and milling depth changes is discussed. Finally, taking the largest Lyapunov exponent as the criterion, the study determines the chatter stability domain of milling by using contour method. The comparative analysis is based on the milling chatter stability domain which obtained from the full discrete method. The experiments obtained the nonlinear stability criterion of aviation aluminium alloy 7075-T6 thin part

    Thermal conduction simulation based on reconstruction digital rocks with respect to fractures

    Get PDF
    Effective thermal conductivity (ETC), as a necessary parameter in the thermal properties of rock, is affected by the pore structure and the thermal conduction conditions. To evaluate the effect of fractures and saturated fluids on sandstone’s thermal conductivity, we simulated thermal conduction along three orthogonal (X, Y, and Z) directions under air- and water-saturated conditions on reconstructed digital rocks with different fractures. The results show that the temperature distribution is separated by the fracture. The significant difference between the thermal conductivities of solid and fluid is the primary factor influencing the temperature distribution, and the thermal conduction mainly depends on the solid phase. A nonlinear reduction of ETC is observed with increasing fracture length and angle. Only when the values of the fracture length and angle are large, a negative effect of fracture aperture on the ETC is apparent. Based on the partial least squares (PLS) regression method, the fluid thermal conductivity shows the greatest positive influence on the ETC value. The fracture length and angle are two other factors significantly influencing the ETC, while the impact of fracture aperture may be ignored. We obtained a predictive equation of ETC which considers the related parameters of digital rocks, including the fracture length, fracture aperture, angle between the fracture and the heat flux direction, porosity, and the thermal conductivity of saturated fluid

    <em>Fusarium graminearum</em> Species Complex and Trichothecene Genotype

    Get PDF
    The fungal phytopathogen in Fusarium species can cause Fusarium head blight of wheat, barley, oats, and other small cereal grain crops worldwide. Most importantly, these fungi can produce different kinds of mycoxins, and they are harmful to humans and animal health. FAO reported that approximately 25% of the world’s grains were contaminated by mycotoxins annually. This chapter will focus on several topics as below: (1) composition of Fusarium graminearum species complex; (2) genotype determination of Fusarium graminearum species complex strains from different hosts and their population structure changes; (3) genetic approaches to genotype determination in type B-trichothecene producing Fusaria fungi; and (4) some newly identified trichothecene mycotoxins, their toxicity, and distribution of the producers

    Association between functional disability with postural balance among patients with chronic low back pain

    Get PDF
    IntroductionPostural balance is impaired in patients with chronic low back pain (CLBP). In addition, the swaying velocity can be affected by low back pain (LBP) dysfunction. However, the extent to which the dysfunction affects postural balance in CLBP patients remains unclear. Therefore, this study aimed to investigate the effect of LBP-related disability on postural balance among CLBP patients and determine factors associated with postural balance impairments.MethodsParticipants with CLBP were recruited and instructed to complete the one-leg stance and Y-balance test. Moreover, they were divided into two subgroups (i.e., low and medium to high LBP-related disability groups) to compare the difference in postural balance based on the degree of LBP-related disability measured by the Roland Morris Disability Questionnaire. The relationships between postural balance and negative emotions as well as LBP characteristics were determined using the Spearman correlations.ResultsA total of 49 participants with low LBP-related disabilities and 33 participants with medium to high LBP-related disabilities participated in the study. Compared to the medium to high LBP-related disability group, patients in the low LBP-related disability group performed better in one-leg stance on the left leg (z = -2.081, p = 0.037). For Y-balance test, patients in the low LBP-related disability group also had greater normalized values of left leg reach in posteromedial (t = 2.108, p = 0.038) direction and composite score (t = 2.261, p = 0.026) and of right leg reach in posteromedial (t = 2.185, p = 0.032), and posterolateral (t = 2.137, p = 0.036) directions as well as composite score (t = 2.258, p = 0.027). Factors associated with postural balance impairments were also revealed, such as anxiety, depression, and fear avoidance belief.DiscussionThe greater the dysfunction degree, the worse the CLBP patient’s postural balance impairment. Negative emotions could also be considered contributing factors for postural balance impairments

    The position of entry point in total knee arthroplasty is associate with femoral bowing both in coronal and sagittal planes

    Get PDF
    ObjectiveTo investigate the femoral entry point of the intramedullary (IM) guiding rod applied to total knee arthroplasty (TKA) in Chinese subjects and the relationship with femoral bowing in the coronal and sagittal planes through three-dimensional (3D) validation methods.MethodsComputed tomography (CT) images of 80 femurs in Chinese subjects were imported into Mimics 19.0 to construct 3D models. All operations were conducted by Rhinoceros software 5.0. The position of the IM rod entry point was assessed by calculating the distance between the entry point and the apex of the intercondylar notch (AIN) in the coronal and sagittal planes. The coronal femoral bowing angle (cFBA) and sagittal femoral bowing angle (sFBA) were also measured.ResultsThe average optimal entry point was 0.17 mm medial and 12.37 mm anterior to the AIN in males, while it was 0.02 mm lateral and 16.13 mm anterior to the AIN in females. There was a significant difference between males and females in the sagittal plane (t = -6.570, p = 0.000). The mean cFBA was 1.68 ± 2.29°, and the mean sFBA was 12.66 ± 1.98°. The sFBA was strongly correlated with the anterior distance of the proper entry point, and the cFBA was moderately correlated with the lateral distance of the proper entry point.ConclusionsThere was a strong correlation between the position of the entry point and the femoral bowing angle in both the coronal and sagittal planes. Thus, to achieve better alignment, the position of the entry point should be measured individually based on femoral bowing

    Up-down asymmetry measurement of tungsten distribution in large helical device using two extreme ultraviolet (EUV) spectrometers

    Get PDF
    Two space-resolved extreme ultraviolet spectrometers working in wavelength ranges of 10-130 Å and 30-500 Å have been utilized to observe the full vertical profile of tungsten line emissions by simultaneously measuring upper- and lower-half plasmas of LHD, respectively. The radial profile of local emissivity is reconstructed from the measured vertical profile in the overlapped wavelength range of 30-130 Å and the up-down asymmetry is examined against the local emissivity profiles of WXXVIII in the unresolved transition array spectrum. The result shows a nearly symmetric profile, suggesting a good availability in the present diagnostic method for the impurity asymmetry study

    Density evaluation of tungsten W24+, W25+, and W26+ ions using unresolved transition array at 27–34 Å in Large Helical Device

    Get PDF
    The extreme ultraviolet (EUV) spectra of a tungsten unresolved transition array (UTA) at 15–70 Å have been studied in Large Helical Device (LHD) by injecting a tungsten pellet. Vertical profiles of the UTA line are measured with a space-resolved EUV spectrometer. In our previous study, it has been found that the UTA line at wavelength intervals of 32.16–33.32, 30.69–31.71, and 29.47–30.47 Å is composed of a single ionization stage of W24+, W25+, and W26+, respectively. In this report, therefore, the densities of W24+, W25+, and W26+ ions are evaluated from the radial profile measured at the above-mentioned wavelength intervals. To evaluate ion density, the photon emission coefficients of W24+, W25+, and W26+ ions are calculated using a collisional-radiative (CR) model. The chord-integrated radial profile of UTA lines is converted to a local emissivity profile using the Abel inversion technique. The density profiles of W24+, W25+, and W26+ ions are thus obtained from the local emissivity profile and the photon emission coefficient in addition to the temperature and density profiles. The obtained density profile of the W24+ ion is analyzed in detail by investigating the dependences of the electron density and the number of tungsten particles injected by the tungsten pellet. The total tungsten ion density nW near ρ = 0.7 where the W24+ ion locates is also estimated from the W24+ ion density with fractional abundance in ionization equilibrium calculated with the Atomic Data and Analysis Structure (ADAS) code. The nW evaluated from the present CR model seems to be larger than that estimated from the number of tungsten particles injected by the pellet. Discussions are made with the nW evaluated from the photon emission coefficient in the CL version of the ADAS code
    corecore