347 research outputs found

    Motion Planning for Mobile Robots

    Get PDF
    This chapter introduces two kinds of motion path planning algorithms for mobile robots or unmanned ground vehicles (UGV). First, we present an approach of trajectory planning for UGV or mobile robot under the existence of moving obstacles by using improved artificial potential field method. Then, we propose an I-RRT* algorithm for motion planning, which combines the environment with obstacle constraints, vehicle constraints, and kinematic constraints. All the simulation results and the experiments show that two kinds of algorithm are effective for practical use

    1H-Pyrrole-2-carbohydrazide

    Get PDF
    The title compound, C5H7N3O, was obtained by the reaction of ethyl 1H-pyrrol-2-carboxyl­ate and hydrazide hydrate. In the crystal, mol­ecules are linked via inter­molecular N—H⋯N and N—H⋯O hydrogen bonds, forming a supra­molecular grid

    On Differential Equations Derived from the Pseudospherical Surfaces

    Get PDF
    We construct two metric tensor fields; by means of these metric tensor fields, sinh-Gordon equation and elliptic sinh-Gordon equation are obtained, which describe pseudospherical surfaces of constant negative Riemann curvature scalar σ = −2, σ = −1, respectively. By employing the Bäcklund transformation, nonlinear superposition formulas of sinh-Gordon equation and elliptic sinh-Gordon equation are derived; various new exact solutions of the equations are obtained

    Shell Analysis and Optimisation of a Pure Electric Vehicle Power Train Based on Multiple Software

    Get PDF
    Motor end cover mounting fracture is a problem recently encountered by novel pure electric vehicles. Regarding the study of the traditional vehicle engine mount bracket and on the basis of the methods of design and optimisation available, we have analysed and optimised the pure electric vehicle end cover mount system. Multi-body dynamic software and finite element software have been combined. First, we highlight the motor end cover mount bracket fracture engineering problems, analyse the factors that may produce fracture, and propose solutions. By using CATIA software to establish a 3D model of the power train mount system, we imported it into ADAMS multi-body dynamic software, conducted 26 condition analysis, obtained five ultimate load conditions, and laid the foundations for subsequent analysis. Next, a mount and shell system was established by the ANSYS finite element method, and modal, strength, and fatigue analyses were performed on the end cover mount. We found that the reason for fracture lies in the intensity of the end cover mount joint, which leads to the safety factor too small and the fatigue life not being up to standard. The main goal was to increase the strength of the cover mount junction, stiffness, safety coefficient, and fatigue life. With this aim, a topology optimisation was conducted to improve the motor end cover. A 3D prototype was designed accordingly. Finally, stiffness, strength, modal, and fatigue were simulated. Our simulation results were as follows. The motor end cover suspension stiffness increases by 20%, the modal frequency increases by 2.3%, the quality increases by 3%, the biggest deformation decreases by 52%, the maximum stress decreases by 28%, the minimum safety factor increases by 40%, and life expectancy increases 50-fold. The results from sample and vehicle tests highlight that the component fracture problem has been successfully solved and the fatigue life dramatically improved. Document type: Articl

    AML1-ETO interacts with Sp1 and antagonizes Sp1 transactivity through RUNT domain

    Get PDF
    AbstractAML1-ETO fusion protein is observed in approximately 12% of acute myeloid leukemia. In the present research, we found that AML1-ETO is able to inhibit Sp1 transactivity. We also found that this inhibition of Sp1 transactivity by AML1-ETO is achieved by interaction between Sp1 and RUNT domain of AML1. AML1b is able to abrogate the inhibition of AML1-ETO. Since Sp1 is involved in hematopoietic cell differentiation, we proposed that AML1-ETO promotes leukemogenesis by blocking cell differentiation through inhibition of Sp1 transactivity.Structured summaryMINT-6549474: AML1-ETO (genbank_protein_gi:AAB34820) physically interacts (MI:0218) with Sp1 (uniprotkb:P08047) by anti bait coimmunoprecipitation (MI:0006)MINT-6549439: Sp1 (uniprotkb:P08047) physically interacts (MI:0218) with AML1-ETO (uniprotkb:AAB34820) by anti tag coimmunoprecipitation (MI:0007)MINT-6549458: Sp1 (uniprotkb:P08047) physically interacts (MI:0218) with AML1a (uniprotkb:Q01196-2) by anti tag coimmunoprecipitation (MI:0007

    Crystal structure, thermal analyses, and acetate binding properties in Zinc(II) complex of a urea-functionalized pyridyl ligand

    Get PDF
    1302-1310A zinc(II) acetate complex with a urea-functionalized pyridyl ligand, [ZnL2(OAc)2]·2H2O (1) (L = N-(4-chlorophenyl)-N'-(4-pyridyl)urea), has been synthesized by the reaction of L with Zn(OAc)2·2H2O under water-containing condition. X-ray single-crystal diffraction analyses reveal that 2-D sheetlike network structure has been formed by the urea N−H×××Npyridyl interactions and C–H···O interactions in the free ligand L. Complex 1 features 3-D hydrogen bonded network formed by intermolecular N−H···O hydrogen bonds and O−H×××O hydrogen bonds involving urea groups, acetate anions and bridged water molecules. The hydrogen bonds play an important role in stabilizing the supramolecular structures. Thermal gravity analyses have been used to investigate the thermal stabilities of L and 1, and the apparent activation energy (Ea) of the decompositions have also been calculated, and the results indicate that the main decomposition of L needs higher apparent activation energy values Ea than that of 1. The acetate binding properties of L in solution have also been evaluated by Ultraviolet-Visible (UV-Vis) spectroscopy. CCDC: 1506202, L; 1506203, 1
    corecore