56 research outputs found

    Computed tomography-based anatomic assessment overestimates local tumor recurrence in patients with mass-like consolidation after stereotactic body radiotherapy for early-stage non-small cell lung cancer.

    Get PDF
    PURPOSE: To investigate pulmonary radiologic changes after lung stereotactic body radiotherapy (SBRT), to distinguish between mass-like fibrosis and tumor recurrence. METHODS AND MATERIALS: Eighty consecutive patients treated with 3- to 5-fraction SBRT for early-stage peripheral non-small cell lung cancer with a minimum follow-up of 12 months were reviewed. The mean biologic equivalent dose received was 150 Gy (range, 78-180 Gy). Patients were followed with serial CT imaging every 3 months. The CT appearance of consolidation was defined as diffuse or mass-like. Progressive disease on CT was defined according to Response Evaluation Criteria in Solid Tumors 1.1. Positron emission tomography (PET) CT was used as an adjunct test. Tumor recurrence was defined as a standardized uptake value equal to or greater than the pretreatment value. Biopsy was used to further assess consolidation in select patients. RESULTS: Median follow-up was 24 months (range, 12.0-36.0 months). Abnormal mass-like consolidation was identified in 44 patients (55%), whereas diffuse consolidation was identified in 12 patients (15%), at a median time from end of treatment of 10.3 months and 11.5 months, respectively. Tumor recurrence was found in 35 of 44 patients with mass-like consolidation using CT alone. Combined with PET, 10 of the 44 patients had tumor recurrence. Tumor size (hazard ratio 1.12, P=.05) and time to consolidation (hazard ratio 0.622, P=.03) were predictors for tumor recurrence. Three consecutive increases in volume and increasing volume at 12 months after treatment in mass-like consolidation were highly specific for tumor recurrence (100% and 80%, respectively). Patients with diffuse consolidation were more likely to develop grade ≄ 2 pneumonitis (odds ratio 26.5, P=.02) than those with mass-like consolidation (odds ratio 0.42, P=.07). CONCLUSION: Incorporating the kinetics of mass-like consolidation and PET to the current criteria for evaluating posttreatment response will increase the likelihood of correctly identifying patients with progressive disease after lung SBRT

    A cross-sectional study to test equivalence of low- versus intermediate-flip angle dynamic susceptibility contrast MRI measures of relative cerebral blood volume in patients with high-grade gliomas at 1.5 Tesla field strength

    Get PDF
    Introduction1.5 Tesla (1.5T) remain a significant field strength for brain imaging worldwide. Recent computer simulations and clinical studies at 3T MRI have suggested that dynamic susceptibility contrast (DSC) MRI using a 30° flip angle (“low-FA”) with model-based leakage correction and no gadolinium-based contrast agent (GBCA) preload provides equivalent relative cerebral blood volume (rCBV) measurements to the reference-standard acquisition using a single-dose GBCA preload with a 60° flip angle (“intermediate-FA”) and model-based leakage correction. However, it remains unclear whether this holds true at 1.5T. The purpose of this study was to test this at 1.5T in human high-grade glioma (HGG) patients.MethodsThis was a single-institution cross-sectional study of patients who had undergone 1.5T MRI for HGG. DSC-MRI consisted of gradient-echo echo-planar imaging (GRE-EPI) with a low-FA without preload (30°/P-); this then subsequently served as a preload for the standard intermediate-FA acquisition (60°/P+). Both normalized (nrCBV) and standardized relative cerebral blood volumes (srCBV) were calculated using model-based leakage correction (C+) with IBNeuroℱ software. Whole-enhancing lesion mean and median nrCBV and srCBV from the low- and intermediate-FA methods were compared using the Pearson’s, Spearman’s and intraclass correlation coefficients (ICC).ResultsTwenty-three HGG patients composing a total of 31 scans were analyzed. The Pearson and Spearman correlations and ICCs between the 30°/P-/C+ and 60°/P+/C+ acquisitions demonstrated high correlations for both mean and median nrCBV and srCBV.ConclusionOur study provides preliminary evidence that for HGG patients at 1.5T MRI, a low FA, no preload DSC-MRI acquisition can be an appealing alternative to the reference standard higher FA acquisition that utilizes a preload

    Spatial control in the heterogeneous nucleation of water

    No full text
    Heterogeneous nucleation of water plays an important role in a wide range of natural and industrial processes. Though heterogeneous nucleation of water is ubiquitous and an everyday experience, spatial control of this important phenomenon is extremely difficult. Here we show for the first time that spatial control in the heterogeneous nucleation of water can be achieved by manipulating the local nucleation energy barrier and nucleation rate via the modification of the local intrinsic wettability of a surface. Such ability to control water nucleation could address the condensation-related limitations of superhydrophobic surfaces and has implications for efficiency enhancements in energy and desalination systems.General Electric Company (Nanotechnology Program)Massachusetts Institute of Technology (d’Arbeloff Career Development Chair
    • 

    corecore