4,021 research outputs found

    Complementarity + Back-reaction is enough

    Get PDF
    We investigate a recent development of the black hole information problem, in which a practical paradox has been formulated to show that complementarity is insufficient. A crucial ingredient in this practical paradox is to distill information from the early Hawking radiation within the past lightcone of the black hole. By causality this action can back-react on the black hole. Taking this back-reaction into account, the paradox could be resolved without invoking any new physics beyond complementarity. This resolution requires a certain constraint on the S-matrix to be satisfied. Further insights into the S-matrix could potentially be obtained by effective-field-theory computations of the back-reaction on the nice slice.Comment: v2, 21 pages, 4 figure

    How to Run Through Walls: Dynamics of Bubble and Soliton Collisions

    Full text link
    It has recently been shown in high resolution numerical simulations that relativistic collisions of bubbles in the context of a multi-vacua potential may lead to the creation of bubbles in a new vacuum. In this paper, we show that scalar fields with only potential interactions behave like free fields during high-speed collisions; the kick received by them in a collision can be deduced simply by a linear superposition of the bubble wall profiles. This process is equivalent to the scattering of solitons in 1+1 dimensions. We deduce an expression for the field excursion (shortly after a collision), which is related simply to the field difference between the parent and bubble vacua, i.e. contrary to expectations, the excursion cannot be made arbitrarily large by raising the collision energy. There is however a minimum energy threshold for this excursion to be realized. We verify these predictions using a number of 3+1 and 1+1 numerical simulations. A rich phenomenology follows from these collision induced excursions - they provide a new mechanism for scanning the landscape, they might end/begin inflation, and they might constitute our very own big bang, leaving behind a potentially observable anisotropy.Comment: 15pgs, 14 figures, v2, thanks for the feedback

    Magnetothermoelectric DC conductivities from holography models with hyperscaling factor in Lifshitz spacetime

    Full text link
    We investigate an Einstein-Maxwell-Dilaton-Axion holographic model and obtain two branches of a charged black hole solution with a dynamic exponent and a hyperscaling violation factor when a magnetic field presents. The magnetothermoelectric DC conductivities are then calculated in terms of horizon data by means of holographic principle. We find that linear temperature dependence resistivity and quadratic temperature dependence inverse Hall angle can be achieved in our model. The well-known anomalous temperature scaling of the Nernst signal and the Seebeck coefficient of cuprate strange metals are also discussed.Comment: 1+23 pages, 4 figures, references adde
    • …
    corecore