We investigate an Einstein-Maxwell-Dilaton-Axion holographic model and obtain
two branches of a charged black hole solution with a dynamic exponent and a
hyperscaling violation factor when a magnetic field presents. The
magnetothermoelectric DC conductivities are then calculated in terms of horizon
data by means of holographic principle. We find that linear temperature
dependence resistivity and quadratic temperature dependence inverse Hall angle
can be achieved in our model. The well-known anomalous temperature scaling of
the Nernst signal and the Seebeck coefficient of cuprate strange metals are
also discussed.Comment: 1+23 pages, 4 figures, references adde